

Technical possibilities to monitor vessel emissions explored in the SCIPPER project

Prof. Leonidas Ntziachristos Mechanical Engineering Dept. Aristotle University Thessaloniki

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Background and Objectives

Project Fiche

Call: 2018-2020 on Mobility for Growth

Section: I - Building a low-carbon, climate resilient future: Low-carbon and sustainable transport

Topic: LC-MG-1-1-2018: InCo flagship on reduction of transport impact on air quality

Duration: 36 + 9 months (Start date: May 1, 2019)

Budget: M€5,0

Coordinator: Aristotle University of Thessaloniki (AUTh)

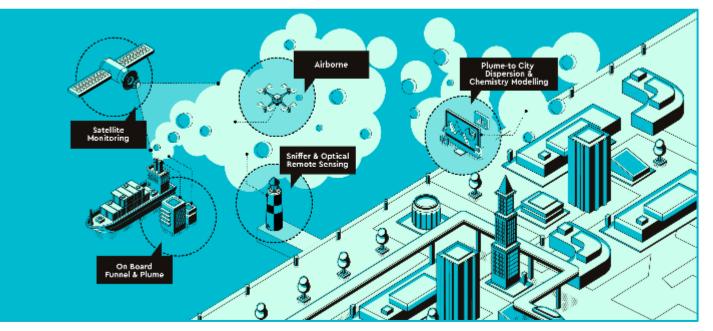
Total Beneficiaries: 17 + 1 International partners

Need for:

- Compliance check of vessels with regard to environmental regulations
- More evidence on monitoring possibilities for low sulphur levels, new pollutants, as well as implications of non-compliant ships to air pollution.

Main objectives:

- To provide evidence on the performance and capacity of different techniques for shipping emissions monitoring and,
- To assess the impacts of shipping emissions on air quality, under different regulatory enforcement scenarios.



Concept

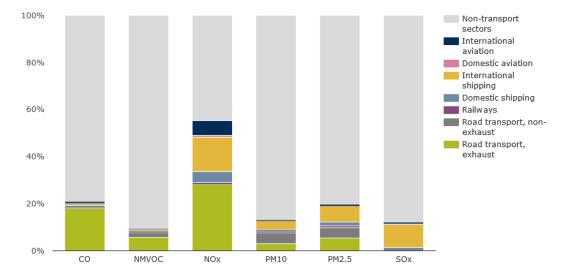
Real-world deployment of various monitoring techniques

Implementation of 5 experimental campaigns at different locations

Runs from 5.2019-1.2023

- Application / validation / comparison of various emission measurement and monitoring techniques for emission standards compliance checking purposes
 - Determination of the impact of shipping on air quality at coastal and harbor level

nue Fili an Th


Shipping Emissions

- Shipping contributes to 3% of global GHG emissions (eqvl. 6th largest country)
- Majority of emissions take place near the coastline – affects air quality in cities
- Maritime transport work expected to increase in the future

Contribution of the transport sector to total emissions of the main air pollutants (EEA, 2019)

SCIPPER Measurement Campaign on RO-PAX ferry (4-stroke diesel engine with SCR)

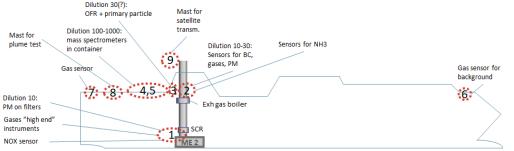
On-board exhaust sampling to obtain physicochemical data

Assessment of NOx abatement and MeOH fuel

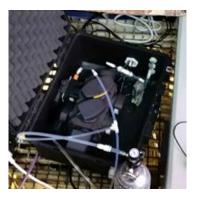
Testing of onboard compliance monitoring,

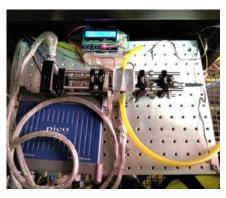
- Selection and testing of equipment & sensors
- Performance assessment , including uncertainty characterization for SO2, NOx and PM/PN
- Intercomparison of different onboard and remote monitoring techniques
- Verification of monitoring techniques with highend instruments

12 combinations of fuel – aftertreatment – engine load point investigated


C2 Sensor Systems on-board

Partner	Instrumentation/sensor List	Placement	Measurement period
AUTH	BC Optoacoustic sensor	eDiluter, deck 7	2 weeks
INO	(mermocoupie)	2 raw (deck 2, deck 7)	4 months
AEROMON	CO_2 (NDIR), SO_2 (EC), NO_2 (EC), NO (EC), NH_3 (EC), CO (EC) and PM (OPC)	eDiluter, deck 7	l week
TAU	Dilution system for particle measurement	deck 7	2 weeks
TAU	PN sensors, BC sensors (from FMI) and reference CPC	deck 7	2 weeks
TAU	Reference aethalometer	Deck 7 after WP3 sampling	l week
CML		deck 7 / 10: (one box aft and one box stern)	l week

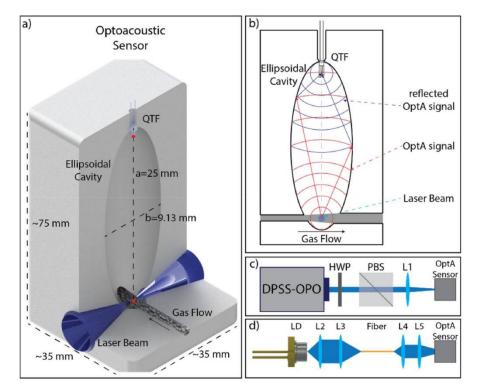

+ high-end reference measurements by IVL

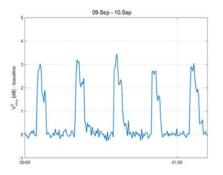


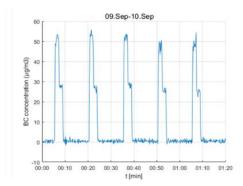
C2 Sensor Systems Setup

Air quality sensor

Proto BC sensor

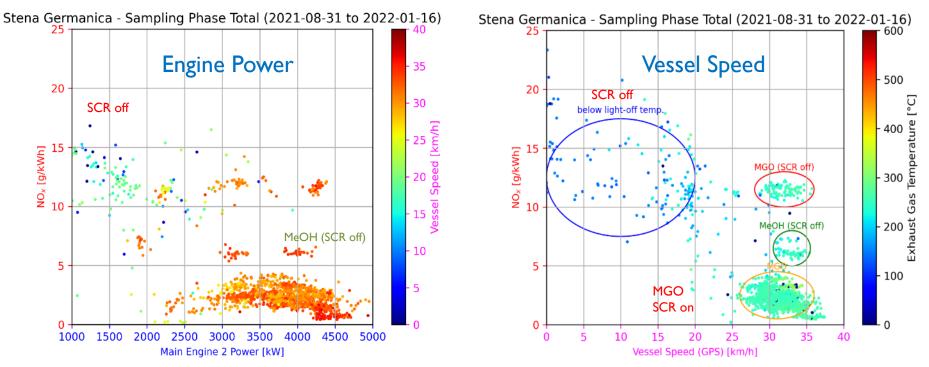



Automotive sensors


Our prototype BC sensor

RSENSE sensor

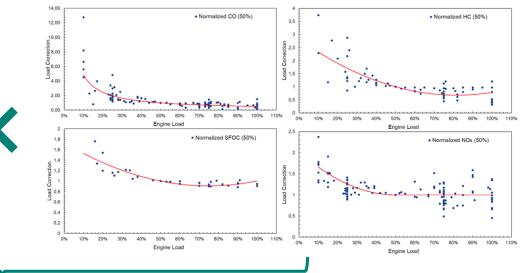
Reference -Aethalometer


Stylogiannis et al., Sensors 2021, doi: 10.3390/s21041379

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

C2 Highlights

NOx (g/kWh): different levels such as with SCR on/off can be clearly identified



ALLER FOR STATE OF

Base EF (Average values of measurements)

Load Correction (Normalized emission rates' load dependency)

Pollutant	Engine type				
	Slow speed	Medium speed	High speed		
NO _x (g/kWh)	14,4	12,4	11,7		
CO (g/kWh)	0,714	0,974	1,10		
HC (g/kWh)	0,358	0,405	0,662		
SFOC (MJ/kWh)	8,48	8,42	9,74		

EFs development at each engine load for:

- pollutants (NOx, CO, PM, HC, etc..) and SFOC
- engine types (slow, medium, high speed)
 - fuels (BFO, MDO/MGO, LNG)

Emission factors already part of the EMEP/EEA Guidebook and the STEAM model

Cross-Instrumentation Campaigns

Relevant campaigns

CI and C4 Marseille, side-by-side observations from measurement vessel and fixed 2019 and 2022

C3 Wedel, side by side measurements Sep 2020

C2, on board Stena Germanica and on shore Kiel, side by side measurements, September 2021

tone little tone tone for

Overview of **CI**

Contractor Services

Marseille, September 2019

Remote compliance monitoring of FSC in ships in and outside the port before global FSC regulations

- First assessment of state-of-art remote and UAS comparability
- Assessment of state-of-art remote techniques including uncertainty characterization
- Input to AQ emissions before global FSC regulation

21 plumes measured by drones

30 plumes measured by a sniffer boat & 17 for intercomparison on SO_2 and NO_x

Air quality measurements at harbor sites

Sniffer intercomparison campaign (C3)

Measurement Campaign in Wedel/Hamburg (9.2020)

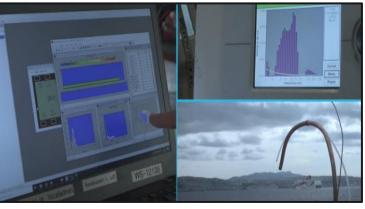
Various remote techniques on shore

Drone mini sniffer

966 plumes measured by sniffers from 436 vessels

65 plumes detected by drones

55 fuel samples


Post global FSC campaign (C4)

Measurement Campaign in Marseille (7.2021)

Drone mini sniffer

Equipped Boat (Sniffer & ageing instrumentation)

Harbor AQ stations

38 different vessels measured 126 plumes

Equipped vessel - Drones - Harbor based stations - Network of AQ microsensors in the city

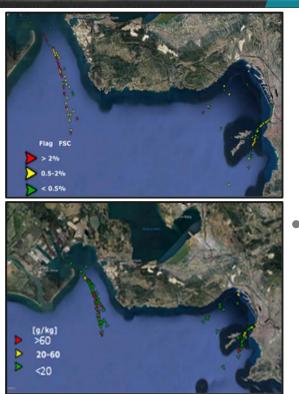
Instrumentation on Sniffer Systems

	Partner/Group	Instrument	
TPRA	BSH	3 sniffers (CO ₂ , SO ₂ , NO, NO ₂ , O ₃) 2 particle size classifiers (5.6 nm – 10µm) 1 LP-DOAS (SO ₂ , NO ₂) *	- in the
	Chalmers	 I sniffer (CO₂, SO₂, NO_x) I laser spectrometer (CO₂, SO₂) I particle size classifier (5.6 nm - 10 μm) I aethalometer (BC) I zenith-sky DOAS (SO₂, NO₂) I mini-Sniffer on UAV (CO₂, SO₂, NO, NO₂, PM) 	
	Explicit	I mini-Sniffer on UAV (CO ₂ , SO ₂ , NO, NO ₂)	
	TNO	I sniffer (CO ₂ , SO ₂ , NO, NO ₂) I CPC I particle size classifier (90 nm – 7.5 μm) I aethalometer (BC)	
	gaseous emission gaseous emission particle emission	n, (optical, remote)	ED -

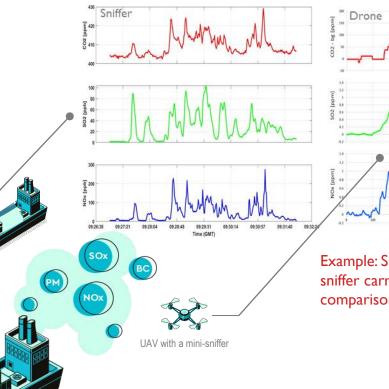
Sensor systems

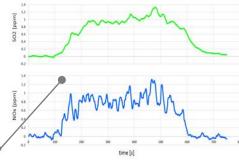
Sensors	Typical sensitivity	Platforms	Dist. ships	FSC principle	Meas priniple	Accuracy
Ultra sensitive sniffer	SO ₂ : 0.06 ppb CO ₂ : 200 ppb	Fixed shipborne Airborne,	>I km	∆SO2/∆CO2	Laser absorption	TBD
Standard sniffer	SO ₂ : 2 ppb CO ₂ : 200 ppb NO _x : 0.5 ppb	Fixed shipborne Airborne,	l km	∆SO2/∆CO2	UV fluore NDIR	TBD
Mini-sniffer	SO ₂ : 10 ppb CO ₂ : 10000 ppb	Drone	50- m	∆SO2/∆CO2	Electro chemical NDIR	TBD
Optical remote sensing (UV/VIS)	SO ₂ : I ppmm NO ₂ : I ppmm	Fixed, shipborne Airborne, satellite	l km	$\Delta SO2/\Delta NO2$	DOAS 300 -450 nm	TBD
Optical remote sensing (IR)	TBD	Fixed	50-200 m	SO2/CO2	Passive FTIR	Demo only

The above is for sulfur. Also NOx, particles (PM,PN,BC), and CH4 were measured

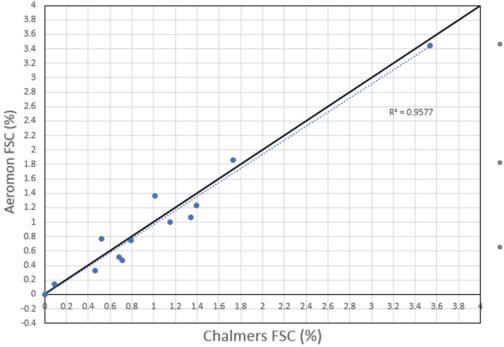


A RANK A




Key findings from CI

FSC and NOx levels before global sulfur cap with different techniques

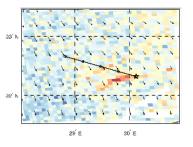

Example: Sniffer on a vessel vs minisniffer carried by a drone detections comparison for a specific plume

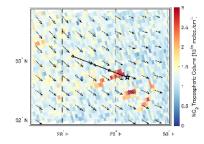
Sniffer boa

Highlight of C

Mini-sniffer (Aeromon BH-12) drone with SO₂, CO₂, NO, NO₂, PM₁, PM_{2.5} and PM₁₀ sensors.

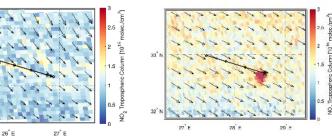
- Calibrated daily with certified calibration gases for traceability and quality control.
- In comparison with the Chalmers reference method, achieved a good linear fit between FSC% results from same plumes.
- Comparison between NOx and PM is ongoing and full comparison with all parameters will be published later this year.



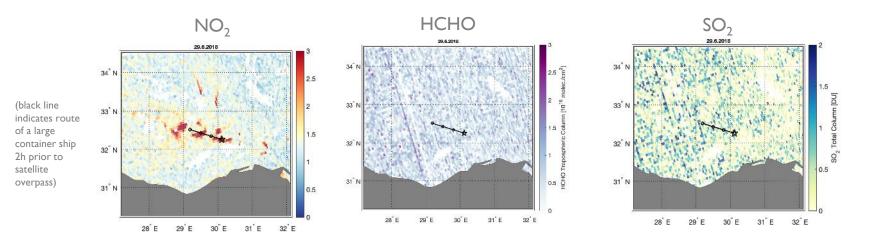

- Signatures of single ships are visible in TROPOMI NO₂ data, but observing conditions (satellite view geometry, meteorology) affect the detected signal strength together with actual ship NOx emissions (Sundström et al. 2022, in prep.):
 - Sun glint/no glint,
 - atmospheric stability,
 - wind speed & direction relative to ship heading
- Improved NO₂ retrieval algorithm for TROPOMI can give up to 15 % more signal over sea, and hence also the detection of single ships is enhanced (Riess et al. 2022)
- Improved automated segmentation of individual ship plumes using spatial correlation metrics and machine learning improve individual ship emission estimates (Kurchaba et al., 2021, 2022 (in prep.)
- More investigation is needed to be able to exploit satellite observations for compliance monitoring but these studies indicate that global monitoring is feasible for NO₂.

Examples of single container ship plumes in TROPOMI NO₂ data

No glint: NO₂ enhancement often detectable


Sun glint: typically more clear $\ensuremath{\mathsf{NO}}_2$ signal

Ship heading vs. wind direction: "Headwind"


25 E

Ship heading vs. wind direction: "tailwind"

- In optimal satellite viewing conditions (cloudfree, sun glint) NO₂ signal from single ships is clearly visible, while for other trace gases signal seems to be too weak and below satellite detection limit.
- With long temporal averaging and data filtering (e.g. account for winds) some elevated signal of SO₂ and HCHO could be detected over busiest shipping routes.

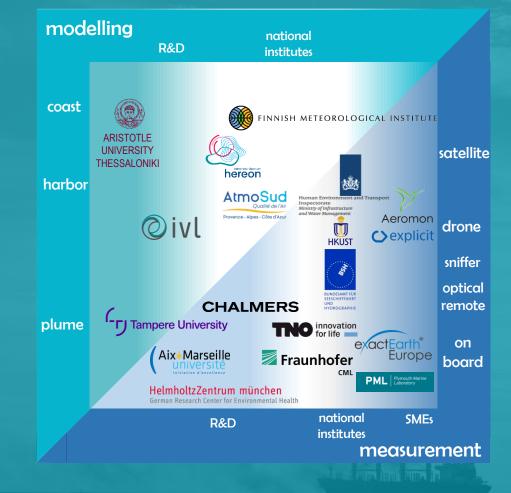
SCIPPER

Concluding Remarks

Project ends Jan. 2023 and final conclusions are yet to be discussed in the consortium. Our observations so far indicate:

- Airborne and stationary SO_x sniffers show acceptable comparability down to below 0.1% FSC. Physical and/or metrological reasons may be responsible for slight underestimation.
- NO_x is also shown to be reliably measured but conversion to g/kWh is an issue. g/kg fuel seems more appropriate if NO_x monitoring is to be considered.
- On-board sensors have the capacity to measure all relevant gases and a number of PM properties (PN, PSD, BC, etc). Long-term durability remains a challenge.
- Satellite monitoring of singular vessel NO₂ emissions appears possible but SO₂ signal is weak. Single-vessel satellite enforcement seems overall challenging.

Call Here Methods Overview (On-going assessment)


Technique	On-Board	Small UAV	Patrol-Vessel	Aircraft/Large UAV	Fixed Station	Fixed station	Optical - Satellite	
Method	Sensors		Sniffers			Remote Optical		
Most widespread detection techniques	SO _x (IR or DOAS) NO, NO ₂ (Electrochem.) CO ₂ (NDIR) BC/PN (various)	SO ₂ (Electrochem., DOAS) NO, NO ₂ (Electrochem.) CO ₂ (NDIR) New concepts	S	SO ₂ (UV Fluorescence NO, NO ₂ (CLD) PN (CPC) CO ₂ (NDIR, CRDS)		SO ₂ (DOAS, IR Iradiance) NO ₂ (DOAS)	NO ₂ , SO ₂ (DOAS)	
Experience	Yes, Scrubber vessels	DK, FI, EMSA	DE, FR, SE	EMSA, BE, FI, (SE)	de, nl, se, dk, fi	DE	FI, GR, NL	
Flexibility in terms of monitoring location	On-board	Yes (restrictions)	Yes (restrictions)	Yes (restrictions)	No	No	No (5.5×3.5 km², depends on pass)	
Open Sea surveillance	Yes	No	Yes	Yes	No	No	Yes	
Availability of results	Can be on-line	Immediately	Immediately	After landing	Immediately	Immediately	Post-processing	
Suitable sites	vessels	line of sight (smaller harbour, canal,)	ports, busy lanes	coast and open sea	<u>major</u> shi (harbour, canal,	pping lane pole, bridge,)	Away from other major sources	
Operation time	24/7 (automated)	daylight	24/7	daylight	24/7 (automated)	24/7 (automated)	daylight/weather	
Resources (cost, personnel)/vessel	High	Low-Medium	Medium	High	Low	Low	Medium (currently processing-tedious)	

Acknowledgments

Armengaud, A.,, Au, C-N., Beecken, J., Buckers, J. Conde, V., Dal Maso, M., D'Anna, B., Deakin, A., Duyzer, J., Fink, F., Fridell, E., Griesel, S., Grigoriadis, A., Haedrich, L., Hallquist, Å., Irjala, M., Jalkanen, J.-P., Karl, M., Keskinen, J., Knudsen, B.,, Knudsen, J., Kousias, N., Kuosa, M., Lanzafame, G.-M., Majamäki, E.,, Mamarikas, S., Matthias, V., Mellqvist, J., Michailidou, A., Moldanova, J., Ntziachristos, V., Oeffner, J., Oppo, S., Proud, R., Schoppmann, H., Simonen, P., Smyth, T., Stylogiannis, A., Sundström, A.-M., Temine-Roussel, B., Timonen, H., van Dinther, D., van Vliet, J., Verbeek, R., Weigelt, A., Weisheit, J., Yang, M.,

Follow us on

f @scipperproject y @ScipperProject in @SCIPPER project @ScipperProject

Contact information Email: leon@auth.gr Telephone: +30 2310 996003 Website: www.scipper-project.eu

Fraunhofer

HelmholtzZentrum münchen Bratial es la vel segue strue for flavordheit and denari I

THE HOMOHOMS UNIVERSITY OF SCIENCE AND TRONKCLODY

PML Rymouth Narive