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ARTICLE INFO ABSTRACT
Editor: Pavlos Kassomenos Tyre wear generates not only large pieces of microplastics but also airborne particle emissions, which have attracted
considerable attention due to their adverse impacts on the environment, human health, and the water system. How-
Keywords: ever, the study on tyre wear is scarce in real-world driving conditions. In the present study, the left-front and left-
Tyr; y:j/ear rear tyre wear in terms of volume lost in mm?® of 76 taxi cars was measured about every three months. This study cov-
?y enfeamre ered 22 months from September 2019 to June 2021 and included more than 500 measurements in total. Some of the
r . data was used to evaluate the effects of vehicle type and tyre type on tyre wear. In addition, a machine learning method
Acceleration . X i O K .
Braking (i.e., Extreme gradient boosting (XGBoost)) was used to probe the effect of driving behaviour on tyre wear by monitor-
Steering ing real-time driving behaviour. The current statistical results showed that, on average, the tyre wear was 72 mg veh ~*
Speed km ™! for a hybrid car and 53 mg veh ™" km ™! for a conventional internal combustion engine car. The average tyre

wear measured for a taxi vehicle configuration featuring winter tyres was 160 mg veh ™" km ™!, which was 1.4 and
3.0 times as much as those with all-season tyres and summer tyres, respectively. The wear rate of left-front tyres
was 1.7 times higher than that of left-rear tyres. The XGBoost results indicated that compared to driving behaviour,
tyre type and tyre position had more important effects on tyre wear. Among driving behaviours, braking and acceler-
ating events presented the most considerable impact on tyre wear, followed by cornering manoeuvres and driving
speed. Thus, it seems that limiting harsh braking and acceleration has the potential to reduce tyre wear significantly.
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1. Introduction

Tyre wear is unavoidable during usage and is influenced by vehicle type
(OECD, 2020; Oroumiyeh and Zhu, 2021), tyre characteristics (Jekel, 2019;
Panko et al., 2018), road typology, ambient and driving conditions (Kim
and Lee, 2018; Le Maitre et al., 1998; Yan et al., 2021). Some researchers
have calculated the tyre wear rate based on the number of passenger cars
registered, the total driving distance, and the annual amount of tyre wear.
For instance, Lee et al. (2020) reported an average tyre wear rate of
51 mg veh ! km ™! for passenger cars in Korea. Lassen et al. (2012)
found a tyre wear rate of 132 mg veh ™! km™"' for passenger cars in
Denmark. Hillenbrand et al. (2005) revealed that the tyre wear rate was
90 mg veh ~ ! km ™ for passenger cars in Germany. In addition, Luhana
et al. (2004) calculated the weight loss of tyres on five-passenger cars dur-
ing a specified driving distance. The average tyre wear rate for five cars was
in the range of 56.4-193.3 mg veh ™' km ™.

Tyre wear would generate different sizes of particles, which would dam-
age not only the atmospheric environment and human health but also
water systems. On the one hand, the debris with sizes below 5 mm from
tyre wear, as the larger categories of microplastics, have a large specific sur-
face area and thus have the capacity to readily adsorb pollutants (Adachi
and Tainosho, 2004; Bakir et al., 2014; Gualtieri et al., 2005; Lee et al.,
2020). The inflow of tyre wear debris into the water system causes the in-
take of the debris by aquatic organisms, potentially leading to the bioaccu-
mulation of persistent organic pollutants (Mantecca et al., 2007).

On the other hand, tyre wear is one of important contributors to the
non-exhaust airborne particulate matter (PM) from vehicles (Grigoratos
and Martini, 2014; Harrison et al., 2012). To meet increasingly strict vehi-
cle exhaust emission regulations, the rapid development of engine combus-
tion control and after-treatment technologies has substantially reduced the
amount of exhaust particle emissions (Wang et al., 2016; Woo et al., 2021;
Liuetal., 2021, 2022). However, non-exhaust particles, including tyre wear
and brake wear, have not been regulated yet. Grigoratos and Martini
(2014) revealed that the maximum contribution of tyre wear particles to
non-exhaust air particles in traffic by mass was up to 30 %. Harrison et al.
(2012) evaluated the tyre wear particle emissions at the sampling site of
the Marylebone Road in central London and found that tyre dust accounted
for 10.7 % of total PM;o mass. Tyre wear particles are predominantly gen-
erated through the following two mechanisms: (1) shearing forces between
the tyre tread and road surface would primarily produce large and coarse
size particles (Kim and Lee, 2018; Kreider et al., 2010); (2) localized
high-temperature hot spots on the tyre tread causes the volatilisation and
condensation of organic compounds in the tyre tread, emitting fine-sized
particles (Kreider et al., 2010; Mathissen et al., 2011; Park et al., 2017;
Pohrt, 2019). In the studies by Baensch-Baltruschat et al. (2020) and
Oroumiyeh and Zhu (2021), it was found that tyre wear particles accounted
for 11 % of the traffic-related particles referring to PM, . Tyre wear parti-
cles were mostly reported in the coarse size range of 2.5 to 10 pm
(Gustafsson et al., 2008; Thorpe and Harrison, 2008), while ultrafine tyre
wear particles were detected in some studies (Kim and Lee, 2018; Kumar
et al., 2013; Mathissen et al., 2011).

Several methods have been employed for tyre wear measurement. In ad-
dition to the source analysis, the road simulators in the laboratory were
used to study tyre wear and tyre wear particles (Gustafsson et al., 2008;
Kim and Lee, 2018; Kupiainen et al., 2005; Tonegawa and Sasaki, 2021).
Although laboratory measurements can adequately present repeatable re-
sults, they are unable to represent real-road driving conditions.

To the best of our knowledge, however, limited information exists con-
cerning the effect of vehicle type, tyre properties, and driving behaviour on
tyre wear under real-world driving conditions. The purpose of the current
work is to ensure the importance rankings of driving behaviour on tyre
wear. The finding regarding the importance rankings of driving behaviour
on tyre wear is likely to be beneficial for designing training courses, which
improve drivers' knowledge of low tyre wear via the training courses
at driving schools and encourage them to adopt more friendly driving
behaviours to reduce tyre wear. In addition, this study advances the
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understanding of the effect of tyre types on tyre wear, which provides pre-
liminary information for users on how to choose low-wear tyres.

2. Methodology
2.1. Data collection and processing

Tyre wear can be evaluated by measuring the loss in tyre weight
(Claffey, 1971) or by monitoring tyre-tread depth (Wang and Huang,
2017; Williams and Evans, 1983). In the current work, the tread-depth mea-
surement was obtained using a laser depth gauge (Mitutoyo 571-100-20)
with an accuracy of 0.01 mm (see Fig. S1 of the Supplementary data)
since this method is easy to operate and can achieve high precision
(Wang and Huang, 2017). The tyre wear in terms of volume lost in mm?
is evaluated by the following equation:

V = drw(r25.4 +wA,3.14)¢(1 = V,) )

where V is the volume loss of tyre wear (mm?>), d; is the tyre tread-depth
loss (mm), w is the tyre width (mm), r is the rim diameter (inch), A, is the
aspect ratio that refers to the ratio of the height of the sidewall from
wheel rim to top of the tread to tyre width, and V; is the void ratio that is
a comparison between the amount of space taken up by gaps and the sur-
face area of the tread face, which is dependent mainly on tyre tread pattern.

In the present study, 76 taxis from the fleets in Rome (Italy) and Athens
(Greece) were monitored under actual operating conditions, of which the
used vehicle characteristics are summarised in Table S1 of Supplementary
data. Three types of tyres from Bridgestone Corporation were used with
tyre pressures of about 51 psi, including the summer tyres, winter tyres,
and all-season tyres. Summer tyres and all-season tyres were mainly used
all year due to the warm climate in Rome and Athens. Few winter tyres
were used in winter, which is used to explore the effect of tyre type on
tyre wear.

This study covered 22 months from September 2019 to June 2021. The
worn state of the vehicle's left front and rear tyres was recorded about every
three months, and there were 552 measurements in total. A sub-group of
total measurements was used to explore the effect of vehicle type on tyre
wear, which was generated from two types of vehicles (Skoda-Octavia
and Toyota-Auris), where Skoda-Octavia is a conventional internal combus-
tion engine (ICE) vehicle, while Toyota-Auris is a hybrid vehicle. These two
vehicle configurations featuring the same summer tyres of 205/55R16 94V
have similar curb weights. A sub-group of total measurements was chosen
to explore the effect of tyre type on tyre wear, which was generated from
Skoda_octavia and Skoda_superb. In addition, a sub-group of total measure-
ments was chosen as the database to explore the effect of driving behaviour
on tyre wear, which was collected from ICE vehicles (Skoda_Octavia,
Skoda_Superb and Ford_C-Max). To reduce the experimental error, each
variable's missing values and outliers were checked in data pre-
processing, and then these data were deleted. The outliers were determined
by the following equation (Dekking et al., 2005):

Outliers>Q; + 1.51IQR or Outliers < Q; — 1.5IQR 2)

where Q; and Qs are the first quartile and third quartile, respectively, and
IQR is the Interquartile Range.

Between each measurement the tyres have experienced a mix of differ-
ent weather and road conditions so that it is impossible to isolate these con-
ditions. In this study, it is assumed that in total the different vehicles have
been driven in similar average conditions, especially when used in the
same area. The left front and left rear tyres of a passenger car are assumed
to be worn in the same way as the right front and right rear tyres. Degaffe
and Turner (2011) and Klockner et al. (2019) have reported that the density
of tyre tread was approximately 1.2 mg/mm?>. Here, the density of tyre
tread was assumed to be 1.2 mg/mm?, and the tyre wear is proportional
to the distance travelled (Owsiak, 1997; Wangs, 2017), so the tyre wear
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per vehicle per kilometre (i.e. mg veh ~ ! km ') was calculated based on the
following equation:

where Wr is the tyre wear per vehicle per kilometre, p is the density of tyre
tread, d is travelled distance, and V and Vj are the volume loss of left-front
and left-rear tyres, respectively.

2.2. Extreme gradient boosting (XGBoost) decision tree

During each of the measurement periods, the real-time driving behav-
iour parameters were also recorded through a Xee 4.3 version app installed
on mobile. It is noted that vehicle speeds and these longitudinal and lateral
accelerations, which are expressed as gravity acceleration g, are not actual
values, and instead, they are categorised into bins. In the collected dataset,
there are 20 bins between —0.9 g and 1.0 g for longitudinal acceleration
(ay), 20 bins between —1.0 g and 0.9 g for lateral acceleration (ay), and
15 bins between 0 and 220 km/h for vehicle speed (v), which means
there are 20 * 20 = 15 bins reflecting the driving behaviour. Thus, it is
very complex to analyse using conventional statistical methods. The
XGBoost model can explore this complex issue according to the literature
(Ma et al., 2020a, 2020b; Qin et al., 2020). XGBoost is an already well-
developed model and was reported in detail by Chen and Guestrin
(2016), which has been applied to many engineering fields (Zhou et al.,
2021). As a consequence, the Python software was used to implement the
XGBoost analysis through the open-source software library to probe the im-
pact of driving behaviour on tyre wear. XGBoost is a supervised machine
learning method and stands for eXtreme Gradient Boosting. It is based on
the gradient boosting algorithm (Friedman, 2001) and improved the effi-
cacy and computational speed by both algorithm and system enhance-
ments. It is a sequential ensemble learning method and is typically used
with decision trees as base learners, whose residuals are minimised by gra-
dient descent algorithms. The general process is that:

K

Yi=Y_ filx), fxeF

k=1

where K is the number of decision tree models, f is the functional space of F,
and F is the feasible classification and regression trees. Then the objective
function is represented as

n K
obj(6) = > 1yi.3) + > Qfi)
i k=1

where [ is the loss function, and the second term is for regularization. Then
by implementing the boosting methodology, the loss will be learned by the
additive new tree.

7 =0y = £100) =30 + FL007 = £i6a) + f2(x)

t
=3+ fo00), 31 = 3 fib) =31+ ol
k=1
Specifically, the objective function becomes

obj =3 1(yes) + D Q) = DU nd TV + £ilx) +QF)
i=1 i=1 i=1

+constant obj*) = zn: (yi— (”E‘_” +ft(xl‘)))2

i=1

£3700F) = 30 [2(5 )£k + £ioe)?] + 7 + constant

i=1 i=1
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n
- 1
obj = £ [1(05 ) + a0 + 70| + () + constan

The next step is calculating the gradient and hessian for i:

8= a;fl - Hl()’i’ﬁ(/ - 1))

h; = 8%, - nl(y,-,?f’ - 1))

The definition of the regularization term is determined by tree models.
Normally, it could be represented as

1, I
QUf) =yT+-A 3 w?
2 =17

where T is the number of tree leaves, and w is the vector of scores on leaves
of three. (Note that XGBoost could support other regularization terms too.
Here is the description of XGBoost as requirEd.) Finally, the closed-form
of the above expression is:

T 1
obj¥ = Z|Gvits (Hj+A)w} | +9T

The advantage of XGBoost is that it improves many techniques in algo-
rithm regularization such as parallelization and cache block, for higher per-
formance in computation. Also, it improves the algorithm for finding the
optimal split points by weighting quantile sketches. These advantages
make XGBoost perform well in many data science scenarios. In addition,
XGBoost could provide the so-called feature importance to help people un-
derstand the model. For example, XGBoost provides the value of feature im-
portance, which is an improvement in accuracy brought by a feature to the
branches it is on.

In the present study, the XGBoost model mainly consists of three parts,
as shown in Fig. 1. The first part includes data collection, data pre-
processing, and feature extraction. Data pre-processing has been presented
above. The real-time driving parameters, including vehicle speed, and lon-
gitudinal and lateral accelerations, were recorded during each of the vehi-
cle tyre measurement periods, while the tyre wear was not a real-time
wear amount, but an average value. Thus, the feature extraction based on
real-time driving data is required to represent one's driving behaviour dur-
ing each measurement period. The Vimean, Gx-mean, aNd @y.mean refer to the
mean values of vehicle speed and longitudinal and lateral accelerations.
The Vg4, Gx.sta, and ay.gq are the standard deviations of vehicle speed and
longitudinal and lateral accelerations. The Vgiew, Qx-skew, and @y._gkew are
the skewness values of vehicle speed and longitudinal and lateral accelera-
tions. The Viure, Ax-kure, and Gy.ure refer to the kurtosis values of vehicle
speed and longitudinal and lateral accelerations. These parameters were
chosen as features to reflect driving behaviour according to the literature
(Reddy, 2019; Therrisen, 2013) since the mean value and standard devia-
tion reflect the average level and variance of the data results, and the skew-
ness and kurtosis reflect the shape of the data distribution. As longitudinal
and lateral accelerations can be positive or negative, both of which would
increase tyre wear, the absolute values were used. Fig. 2 shows the correla-
tion coefficient of the feature parameters of driving behaviour. It can be ob-
served that the correlation coefficients are all larger than 0.91 between the
mean and standard deviation values, as well as between the skewness and
kurtosis of collected data, respectively, which means that they show a
highly positive correlation, respectively. As a result, the ay_mean, Tx-skews
Ay-mean> Gy-skews Vmean and Vgiew Were chosen as the influential features re-
garding driving behaviour to explore the impact of the importance rankings
of these features on tyre wear.
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Fig. 1. The framework of the proposed methodology.
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Fig. 2. Relationships among the various features regarding driving behaviour.

After pre-processing and feature extraction of the collected data,
the model optimisation was performed. A sub-group from a similar
vehicle equipped with various types of tyres and different drivers
was used for a machine learning model. Typically, datasets can be di-
vided into 50 % & 50 %, 75 % & 25 % and 80 % & 20 % as training and
testing sets for machine learning models. The optimal division of the
training and testing sets depends on various factors, such as the
choice of model, data size, etc. In our work, 50 % of the data as a
training set may not be sufficient to cover the overall trend, while
80 % of the data as a training set may cause overfitting. As a result,
a compromise of these two divisions, that is, 75 % of the data, was
chosen randomly as a training set in our work. 75 % of the data as a
training set was also widely used in the XGBoost model (Chang
et al., 2021; Ferreira et al., 2021; Woillard et al., 2021). In the
XGBoost, it trained a set of regression trees as base learners in a par-
allel way and gave the result via summing up the scores of each re-
gression tree. The following parameters are important for affecting
the model performance:

v Learning rate: This parameter is used to adjust the size of the learning
step. Too small will result in a local optimal value and slow calculation,
while too large may miss the optimum and fail to converge.

v Min child weight: This parameter determines the minimum sum of in-
stance weight (hessian) needed in a child. The larger min child weight
is, the more conservative the model will be. It was used to prevent
overfitting.

v Sample subsampling rate: this represents the fraction of observations to
be sampled for each tree. Lower values prevent overfitting but might
lead to under-fitting.

v/ Maximum tree depth: This refers to the maximum depth of a tree. A
larger value may be beneficial to fit the data better.

v L1 and L2 regular coefficient: An increase in these two parameters will
make the model more conservative.

Table 1 lists the final model parameters corresponding to the optimal
XGBoost model. Finally, the optimised XGBoost was used to rank the fea-
ture importance of driving behaviour via averaging the feature importance
in each tree. The feature importance in a single XGBoost tree was
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Table 1

The key parameters of the XGBoost model.
Parameter name Values
Learning rate 0.1
Min child weight 3
Sample subsampling rate 0.5
Maximum tree depth 3
L1 regular coefficient 0.05
L2 regular coefficient 1

determined by the quantity of information obtained after splitting the tree
using the feature. More details regarding the calculation process are given
in the literature (Ma et al., 2020a, 2020b).

3. Results and discussion
3.1. Effect of vehicle type on tyre wear

A sub-group of total measurements was used to explore the effect of ve-
hicle type on tyre wear, which was generated from two types of vehicles
(Skoda-Octavia and Toyota-Auris), as shown in Fig. 3. On average, the
tyre wear was 72 mg veh ' km ™! for the Toyota-Auris and 53 mg veh ™"
km ! for the Skoda-Octavia. Compared to the Skoda-Octavia, the tyre
wear of Toyota-Auris was worse, with an average increase of 36 %, which
is likely closely related to the different powertrain. Compared to a conven-
tional ICE vehicle, a hybrid powertrain vehicle possesses a faster accelera-
tion due to higher instant torque at start-up, which causes more tyre
wear. A literature survey was performed by Jekel (2019), who pointed
out that electric or hybrid cars would produce more tyre wear due to
their high instant torque at start-up. Boretti (2019) reviewed the advan-
tages and disadvantages of conventional vehicles and revealed that as elec-
tric vehicles are heavier and have more instant torque than ICE cars, they
produce more PM, 5 from tyre wear. Timmers and Achten (2016) reviewed
the non-exhaust PM;, and PM, 5 emissions and found that the average
PM, o and PM, 5 values of tyre wear from electric passenger cars in the liter-
ature were higher than those from equivalent ICE passenger cars. Beddows
and Harrison (2021) determined the vehicle weight dependence of PM; o
and PM, 5 emissions from non-exhaust emissions and revealed more PM;,
and PM, s emissions from tyre wear for electric passenger cars than for
the corresponding ICE passenger cars.

3.2. Effect of tyre feature on tyre wear

3.2.1. Tyre type

A sub-group of total measurements was chosen to explore the effect of
tyre type on tyre wear, which was generated from Skoda_octavia and
Skoda_superb with the identical power drive system with summer tyres,
winter tyres and all-season tyres (Bridgestone). Fig. 4 presents the

140

[ skoda_octavia (Std Dev: 11.3)
1204 I Toyota_auris (Std Dev: 13.4)

Max

100 4

o]
o
1

[=2]
o
1

B
o
1

Tyre wear (mg veh™! km™)
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N
o
1

Fig. 3. Tyre wear of summer tyres as functions of vehicle type.
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descriptive statistic results of the tyre wear. In addition, Table S2 of the Sup-
plementary data list the concrete values of tyre wear. The lowest value was
obtained from the summer tyres, while the highest value was detected on
the winter tyres. The tyre wear from vehicles configured with all-season
tyres varied substantially, ranging from 56 mg veh ! km ! to 175 mg
veh ™! km ™. The average tyre wear generated from taxi vehicles config-
ured with the winter tyres was 160 mg veh ~* km ™!, which was 1.4 and
3.0 times more than those configured with all-season tyres and summer
tyres, respectively. Such a difference in the tyre wear rate from various
types of tyres is likely ascribed to their different rubber compounds and
tread patterns. Winter tyres are generally made from a higher natural rub-
ber in their makeup and have a deep tread pattern. The softer they are,
the more the tyre can interlock with the road surface, improving grip and
handling, which leads to an increase in tyre wear (OECD, 2020; Pokorski
et al., 2019). However, summer tyres tend to have less natural rubber con-
tent and a simple block-shaped pattern, meaning that summer tyres have a
low friction coefficient and thus reduce tyre wear (Pokorski et al., 2019).
All-season tyres are composed of an intermediate rubber compound and
combine the properties of both summer and winter tyres (Vieira and
Sandberg, 2017). Thus, on average, the all-season tyre wear was lower
than the winter tyres and higher than summer tyres. Previous studies
have shown that tyre wear is strongly dependent on tyre types (Jekel,
2019; van der Gon, 2012; Wagner et al., 2018). Winter tyres have higher
natural rubber content and present softer properties, which cause them to
wear more quickly at high temperatures (Cheah et al., 2015). It is therefore
inferred that the tyre wear rate of winter tyres is likely greater than that of
summer and all-season tyres. In addition, it is worth mentioning that the ve-
hicle tyre wear in Northern and Southern Europe would be influenced by
the following factors: 1) During the winter season, the mean friction coeffi-
cient of the road pavement is lower in Northern Europe than in Southern
Europe due to the frequent snowfall and wetter on the road surface after
salt application, thus reducing tyre wear (Wallman and Astrém, 2001);
2) while the rubber of tyre is generally softer in Southern Europe than in
Northern Europe due to higher temperatures, increasing tyre wear.

Table 2 summarises the tyre wear generated from passenger cars in sev-
eral countries. In the present work, the average tyre wear for summer, all-
season, and winter tyres was 53 mg veh "' km ™!, 112 mg veh ™! km ™!
and 160 mg veh ™' km ™!, respectively. Luhana et al. (2004) evaluated
tyre wear by monitoring the weight loss of tyres on five-passenger cars
over a specific driving distance. In five cars, the maximum and minimum
mean tyre wear rates were 56.4 mg veh ™! km ! and 193.3 mg veh "’
km ™', Moreover, tyre wear rate was found to fluctuate during different spe-
cific driving distances, which may be related to the variation in tyre wear
resistance with increasing driving distance. In the study by Councell et al.
(2004), however, they summarised the tyre wear rate under various driving
scenarios from different literature. Most tyre wear rates were reported to be
constant without considering the change in tyre wear resistance. Kole et al.
(2017) conducted a thorough review of tyre wear in different countries

300
I summer tyre (Std Dev: 12.4)
<2504 [ All season tyre (Std Dev: 25.6)
E I Winter tyre (Std Dev: 12.8)
= 200 4
(]
>
£ 150 -
5
@ 100 Max
2
o
> 50+
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0

Fig. 4. Tyre wear as functions of tyre type.
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Table 2
Summary of the average tyre wear rate from passenger cars.

Tyre wear (mg km ™' veh ™ 1) Country Reference

53 for summer types Present work
112 for all-season tyres

160 for winter tyres

Italy and Greece

100 United Kingdom (Luhana et al., 2004)

50 Sweden (Gustafsson, 2002)

90 Germany (Hillenbrand et al., 2005)

80 Germany (Baumann and Ismeier, 2013)
132 Denmark (Lassen et al., 2012)

132 Norway (Sundt et al., 2014)

51 South Korea (Lee et al., 2020)

132 China (Kole et al., 2017)

132 USA (Kole et al., 2017)

132 for urban road Netherlands
85 for rural road

104 for motorway road

(Verschoor et al., 2016)

from various literature. For instance, Hillenbrand et al. (2005) and
Baumann and Ismeier (2013) obtained the tyre wear rates of 90 mg
veh ™! km ™! and 80 mg veh ™! km ~?, respectively, based on the number
of passenger cars registered in Germany, total driving distance and the an-
nual amount of tyre wear. The same method was employed by Lassen et al.
(2012), who gained a tyre wear rate of 132 mg veh ! km ™! in Denmark.
Verschoor et al. (2016) calculated tyre wear from passenger cars on
urban, rural and motorway roads and found that tyre wear increased in
the order of rural, motorway and urban roads. They ascribed this phenom-
enon to the higher frequency of sudden braking and rapid acceleration of
passenger cars in urban areas. Cho et al. (2011) also revealed that the brak-
ing and acceleration manoeuvres could generate more tyre wear. Conse-
quently, the higher rates of braking and acceleration on urban roads
inevitably increase tyre wear. The tyre wear rates from the studies per-
formed in different countries were in the range of 50-132 mg veh *
km ™. The substantial difference in tyre wear rate among these countries
is probably due to many factors, such as road surface, vehicle characteris-
tics, tyre features, and driving behaviour (Boretti, 2019; Lee et al., 2020).

3.2.2. Tyre position

Tyre wear of left-front and left-rear tyres were evaluated in the present
study. The descriptive statistics of left-front and left-rear tyre wear are
shown in Fig. 5. On average, the wear rate of left-front tyres was 27 mg
km ™', which was 1.7 times as much as the wear rate of left-rear tyres.
This is likely ascribed to the following factors: 1) more vehicle weight is ap-
plied to the front tyres (Braghin et al., 2006; Perricone et al., 2019); 2) the
front wheel for a front-wheel driven vehicle provides acceleration torque
(Jekel, 2019); 3) the front wheels are angled slightly inwards to improve
handling (Fallah et al., 2009); and 4) the front wheels, as the steering
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Fig. 5. Tyre wear as functions of tyre position.
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wheel, are more subject to steering movements, which may induce slipping
and thus accelerate tyre wear.

3.3. Effect of driving behaviour on tyre wear

A sub-group of total measurements was served as a dataset to probe the
effect of driving behaviour on tyre wear. Fig. 6 shows the histogram of all
driving behaviour features. It is hard to visualise the joint distribution of
all variables. To visualise the effect of driving behaviour on tyre wear,
two typical examples were chosen, as shown in Fig. 7. Positive and negative
longitudinal accelerations correspond to the vehicle accelerating and brak-
ing, and positive and negative lateral accelerations represent cornering
right and left, respectively. It can be seen that the average tyre wear rate
was distinctly different, which can be interpreted by the differences in the
longitudinal and lateral acceleration levels that each driver imposes on
the vehicle. From Fig. 7, the driving behaviour of one driver was more rad-
ical, with a higher frequency occurring in the larger longitudinal and lateral
accelerations, and the longitudinal and lateral accelerations of 0 g only ac-
count for 36 %. However, another driver drove the vehicle more moder-
ately, with the longitudinal and lateral acceleration of 0 g accounting for
50 %. The above description is likely to be the main reason for the clear dif-
ference in tyre wear. OECD (2020) reported that up to 30 % of tyre wear
could be attributed to driving behaviour. Kim and Lee (2018) found that
the particles from tyre wear were heavily dependent upon the driving con-
ditions. Le Maitre et al. (1998) reported that there were noticeable differ-
ences in the tyre wear between vehicles driven by professional and
moderate use drivers. They ascribed this phenomenon to the fact that an ex-
perienced driver could drive the vehicle at the speed limit with longitudinal
and lateral acceleration levels much higher than moderate use drivers,
which caused the difference in tyre wear. To better understand which driv-
ing behaviours, including vehicle speed, and longitudinal and lateral accel-
erations, exert a more significant impact on tyre wear, the XGBoost was
used in the present study. More details will be discussed in the following
section.

3.3.1. XGBooost model results

Fig. 8 presents the variation curves of the tyre wear rate under various
real-world driving behaviours and the predicted value of the XGBoost
model. It can be seen that the XGBoost model could successfully predict
most peak values of tyre wear under real driving conditions. Compared
with the tested values, some of the predicted results obtained from the
XGBoost model were large, while others were small. Overall, the XGBoost
model presented a good predictive ability for the entire trend, but there
was not an accurate prediction of the turning points. A similar study was
performed by Ma et al. (2020a,b), who predicted the PM, 5 mass concentra-
tion using the XGBoost model and found that the turning point of the PM, 5
mass concentration could not be forecast accurately. Thus, it may be diffi-
cult for the XGBoost model to find perfect regularity in the existing data.

To better understand the prediction accuracy of the model, two exten-
sively used evaluation indexes, including square correlation coefficient
(R?) and root mean square error (RMSE), were introduced. Fig. 9 shows
the R? and RMSE values between the tested and predicted tyre wear rates
from the training and testing databases. The R? and RMSE values were
0.86 and 0.106 for the training set and 0.83 and 0.175 for the testing set,
respectively. These results indicated that the proposed XGBoost model
had a good predictive capability for the tyre wear rate of vehicles driven
under real-world driving conditions. In the follow-up work, a deep learning
method called “transfer learning” may be developed, which would store the
knowledge learned by the previously trained machine learning model as
initialisation and hence it could present better performance for new data.

3.3.2. Effect of driving behaviour on tyre wear

Fig. 10 shows the feature importance ranking of driving behaviour based
on XGBoost outputs. Compared to driving behaviour, tyre type and tyre posi-
tion installed on the vehicle were more important factors affecting tyre wear
rate. Among driving behaviour, the ay mean and @y skew presented the most
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Fig. 6. Histogram of each variable among drivers.

considerable impact on tyre wear rate. It meant that the driver who had a high
frequency of harsh braking and accelerating would generate more tyre wear. It
has been confirmed that both shearing force and friction heat between the tyre
tread and the road pavement would increase tyre wear (Kreider et al., 2010;
Mathissen et al., 2011; Piscitello et al., 2021). As a result, the shear force is in-
creased when harsh braking or acceleration occurs, increasing the tyre's me-
chanical wear and thus generating coarse and even larger particles. In
addition, more organic compounds in the tyre tread are volatilized due to
the friction heat when harsh braking or acceleration occurs, which may in-
crease the number of ultrafine particles (Mathissen et al., 2011; Zum Hagen
et al., 2019). Salminen (2014) created a tyre wear model and found that the
tyre wear depended strongly on the longitudinal slip, where the tyre wear var-
ied up to a factor of 2 within a longitudinal slip ranging from —0.3 gt0 0.3 g.
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Among the driving behaviours, the third and fourth important factors
that affect tyre wear rate were the ay.mean and ay.gew. The current results
showed that vehicle cornering events, especially extreme cornering, had a
significant impact on tyre wear. Previous studies have proved that the en-
hanced lateral force would lead to a sharp increase in tyre wear (Pohrt,
2019; Veith, 1992). Thus, the lateral force acting on the tyre surface is in-
creased when the vehicle cornering occurs, which inevitably generates
more tyre wear (Pohrt, 2019). In the study by Li et al. (2011), it was
found that more tyre wear would be generated during the cornering sec-
tions of roads. This conclusion is in agreement with the bench test results
performed by Stalnaker et al. (1996), where urban driving with only 5 %
of the distance driven accounted for 63 % of tyre wear. The reduction of
cornering driving behaviour, especially for high-speed cornering, would
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Fig. 7. Tyre wear for the Skoda_octavia configured with summer tyres under typical aggressive (left) and moderate (right) driving behaviours.
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Fig. 8. Predicted and tested tyre wear rate under various driving behaviours.

be one of the most effective strategies to lower tyre wear (AQEG, 2019;
Boulter, 2005; Kwak et al., 2013).

The Vinean and Vgew ranked the fifth and sixth important influential fac-
tors for tyre wear rate among driving behaviours, respectively. The results
from this work indicated that tyre wear would be more severe when the
driver has a high frequency of high speeds. Such a phenomenon is primarily
because the adhesion movement becomes more intense with increasing ve-
hicle speed, increasing tyre wear (Gustafsson et al., 2008; Pirjola et al.,
2009; Yan etal., 2021). Kim and Lee (2018) reported a rising PM concentra-
tion of tyre wear as the driving speed increased. Chen and Prathaban
(2013) evaluated the effect of truck speed on tyre wear. It was found that
tyre wear showed an exponential increase as the vehicle speed increased.
Salminen (2014) also discovered that the tyre wear increased exponentially
with the driving speed. However, Li et al. (2011) and Foitzik et al. (2018)
found a linear correlation between tyre wear and vehicle speed.

Overall, based on the results from our work, it is recommended that eco-
friendly driving behaviour, especially for gently accelerating and braking
behaviours, should be incorporated into driver training to have the poten-
tial to substantially reduce tyre wear. It is, however, worth mentioning
that even though the XGBoost model can evaluate the importance ranking
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of the effect of driving behaviours on tyre wear, it remains unclear how
each variable of driving behaviour quantitatively determines output results.
In our follow-up work, it is required to quantitatively identify relationships
between driving behaviours and tyre wear.

4. Conclusions

In this study, the tyre wear and driving behaviour of a fleet of taxi cars
were measured under real-world driving conditions. Meanwhile, the XGBoost
was used to rank the feature importance of driving behaviour in affecting tyre
wear. The data from this study indicate, on average, that the tyre wear was
72 mg veh ! km ™! from a hybrid car, which was 1.4 times as much as
that from an equivalent conventional ICE vehicle, depending on the vehicle
type. This phenomenon is likely ascribed to the fact that hybrid vehicles
have high instant torque at start-up and thus present faster acceleration, lead-
ing to an increase in tyre wear. The mean wear rates for taxis configured with
winter tyres, all-season tyres and summer tyres were 160 mg veh ™! km ™ ?,
112 mg veh ™! km ™' and 53 mg veh ™! km ™, respectively. The XGBoost re-
sults indicated that compared to driving behaviour, tyre type and tyre posi-
tion presented more important influences on tyre wear. Among driving
behaviours, braking and accelerating events had the most considerable im-
pact on tyre wear, followed by cornering events and driving speed. The find-
ing regarding the importance rankings of driving behaviour on tyre wear is
likely to be beneficial for designing the training courses, which improve
drivers' knowledge of low tyre wear via the training courses at driving schools
and encourage them to adopt more friendly driving behaviours to reduce tyre
wear. In addition, this study provides the dataset regarding the mass of tyre
wear released into the environment and the importance of the different fac-
tors affecting tyre wear, which is useful for the development of a methodol-
ogy to measure the abrasion rate and for the identification of the measures
needed to reduce the emissions of microplastics into the environment.
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