

Session 2: 10:50 – 11:50

Adapting driver behaviour for lower emissions

OBD — Retrofits — Tampering — Inspection

Moderator: Dimitri Margaritis

Mid-term results on the road to low emissions: 28 May 2021

Speakers:

Data access from On-Board Diagnostics (OBD) Dimitri Margaritis (CERTH/HIT)

Simulation of retrofits Haibo Chen (University of Leeds)

Real-world tests of retrofits Arno Amberla (Proventia)

Tampering and inspection: technical aspects Dimitri Margaritis (CERTH/HIT)

Tampering and inspection: legal aspects Esther Tenge (Spark Legal Network)

Adapting driver behaviour for lower emissions

Data access from On-Board Diagnostics (OBD)

Dimitri Margaritis CERTH/HIT

Mid-term results on the road to low emissions: 28 May 2021

Dongles for OBD data access

- Dongles are often provided in various variants or models
- Mainly differ in the access interface, e.g., Bluetooth Cellular, RS232

- There is a huge number of dongles in the market that
 - all base on the ELM327 chipset, or
 - provide compatibility to the ELM327 commands

Indicative list of current OBD dongles with their

variants

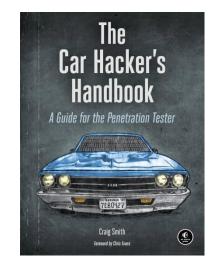
Brand / Product	Link
OpenXCP	http://openxcplatform.com/
Ford Reference VI	http://openxcplatform.com/vehicle-interface/hardware.html#ford-reference-design
CrossChasm C5 BT	http://openxcplatform.com/vehicle-interface/hardware.html#crosschasm-c5-bt
CrossChasm C5 Cellular	http://openxcplatform.com/vehicle-interface/hardware.html#crosschasm-c5-cellular
CrossChasm C5 BLE	http://openxcplatform.com/vehicle-interface/hardware.html#crosschasm-c5-ble
DIY chipKIT-based VI	http://openxcplatform.com/vehicle-interface/hardware.html#diy-chipkit
Freematics	https://freematics.com/products/
Freematics ONE	https://freematics.com/products/freematics-one/
Freematics ONE+ Model A	https://freematics.com/products/freematics-one-plus/
Freematics ONE+ Model B	https://freematics.com/products/freematics-one-plus-model-b/
Freematics ONE+ Model H	https://freematics.com/products/freematics-one-plus-model-h/
Freematics OBD-II UART Adapter V2.1 (for Arduino)	https://freematics.com/products/freematics-obd-ii-uart-adapter-mk2
Freematics OBD-II I2C Adapter (for Arduino)	https://freematics.com/products/arduino-obd-adapter/
OBDLink	https://www.obdlink.com
OBDLink MX+	https://www.obdlink.com/mxp/
OBDLink MX BlueTooth	https://www.obdlink.com/mxbt/
OBDLink LX BlueTooth	https://www.obdlink.com/lxbt/
OBDLink EX	https://www.obdlink.com/ex/
OBDLink SX	https://www.obdlink.com/sxusb/
CSS Electronic	https://www.csselectronics.com
CANedge1	https://www.csselectronics.com/screen/product/can-logger-sd-canedge1/language/en
CANedge2	https://www.csselectronics.com/screen/product/can-lin-logger-wifi-canedge2/language/en
CL1000	https://www.csselectronics.com/screen/product/can-bus-logger-canlogger1000
CL2000	https://www.csselectronics.com/screen/product/can-bus-logger-canlogger2000
CL3000	https://www.csselectronics.com/screen/product/can-bus-logger-canlogger3000
Simma Software	http://www.simmasoftware.com/j1939-adapter-j1708.html
VNA2-ELD	http://www.simmasoftware.com/eld-brochure.pdf
VNA-232	http://www.simmasoftware.com/j1939-to-rs232.pdf
VNA-USB	http://www.simmasoftware.com/j1939-to-usb.pdf
VNA-WiFi	http://www.simmasoftware.com/wireless-j1939-to-wifi.pdf
VNA2-BT	http://www.simmasoftware.com/wireless-j1939-to-bluetooth.pdf
Pace	https://www.pace.car/de
Pace Link	
LAWICEL	
CANUSB	https://www.obd-2.de/shop/can-bus/20/can-car-sniffer-kit
comma.ai	https://comma.ai/
panda OBD II Interface (white)	https://comma.ai/shop/products/panda-obd-ii-dongle
punda obb minteriade (minte)	

Selection criteria for a dongle

Characteristics	Car	Heavy duty vehicle	Required	ELM327 compatible	Potential Dongles OBDLink (MX+, LX)	Freematics One+ (Model B, Model H)
Supported protocols	Raw CAN OBD	Raw CAN J1939	all	Raw CAN OBD J1939	Raw CAN OBD J1939	Raw CAN OBD J1939 (H)
Accepted maximal voltage	≥ 12V	≥ 24V for J1939		12V	12V	12V (B) ≥ 24V (H)
Main connector	OBD II Type A	OBD II Type B for J1939		OBD II Type A OBD II Type B for J1939	OBD II Type A	OBD II Type A (B) OBD II Type B (H)
Interfaces	Bluet W U:	SB /4G	one	Bluetooth	Bluetooth (MX+, LX)	BLE/BT WiFi USB LTE/4G SD / ROM (on-unit logging)
Features	G-Force Acc Orien	tion/GPS celerometer tation ne Clock		-	-	Geolocation/GPS G-Force Accelerometer Orientation Real Time Clock
Data Exchange Format		DN SV prietary	one	non-proprietary	non-proprietary	
Commands		7 AT/ST nented	one	ELM327 AT	ELM327 AT/ST	custom programmable
Developer Libraries	Pyt Flu	leJS hon tter upport	one	broadest support all important languages	broadest support all important languages	programmable

Do all vehicles provide the same data set?

- Availability of Public PIDs vs different care
 - Number of PIDs/total PIDs
 - Number of emission-specific PIDs
 - Data versus age of the car; type of engine
- Sampling frequency
 - Avg/min/max; distribution; ... of time


"protocol": { "id": "". "name": "" }, "brand": "Fiat" "model": "Qubo", "year reg": 2011, "ELM VERSION": "None", "VIN": "ZFA22500000224144", "PIDS A": "None" "PIDS B": "None" "PIDS C": "None" "PIDS D": "None" "PIDS E": "None" "PIDS F": "None" "MIDS A": "None" "MIDS B": "None" "MIDS C": "None" "MIDS D": "None", "MIDS E": "None" "MIDS F": "None", "PIDS 9A": "None". "multiple avgQueryTime": 1.56, "multiple queryTimes": [0.0, 0.0. 0.0, 0.0, 0.0. 0.0, 15.6. 0.0, 0.0, 0.0 1, "single avgQueryTime": 0.0, "single queryTimes": [0.0, 0.0, 0.0. 0.0, 0.0. 0.0, 0.0. 0.0, 0.0. 0.0

ł

Is OBD a gate for comprehensive data?

- Open standard for OBD-purpose only covers a subset of all potentially available data accessible via the OBD/CAN-interface
- ...but the remaining are non-standard, largely OEM specific
- OBD is also relevant only to passenger cars and vans, because HD vehicles have another kind of architecture and set of standards
- A serious effort should be made to "crack" the messages and obtain a larger sample of parameters that can be monitored for:
 - Exhaust emissions level
 - Maintenance
 - Tampering
 - Driving patterns of the motorist at the wheel
- But is "cracking" a legal act?

modales

OBD vulnerability to tampering

- **OBD** suppressors: OBD fault code memory with diagnostic trouble codes can be erased
- An anti-tampering procedure is the development of a function that aims to specifically detect and prevent only the malicious DTC (diagnostic Trouble Code) deletion
- Solution (advises also by DIAS EU project)
 - Setting a permanent fault
 - Logging and reporting faults
 - Set the frequency of a DTC reset

Adapting driver behaviour for lower emissions

www.modales-project.eu

Thank you

Contact:

Dimitri Margaritis CERTH/HIT Email: <u>dmarg@certh.gr</u>

All slides © MODALES Partners, reproduction not allowed without permission of the author of the slides.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815189.

Adapting driver behaviour for lower emissions

Simulation of retrofits

MODALES mid-term event, virtual meeting, 28 May 2021

Dr. Haibo Chen & Dr. Jianbing Gao Institute for Transport Studies, University of Leeds

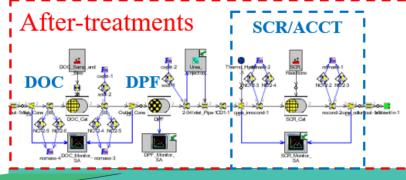
The MODALES methodology:

"Real-world test"

- Ground-truth data
- Performance under real-world conditions
- Real impact on AQ, exposure and health
- Expensive and time-consuming
- Limited tests in terms of vehicle types, traffic conditions, driving behaviours *etc*.
- Data quality due to unknown errors

"Simulation & Modelling"

Traffic model

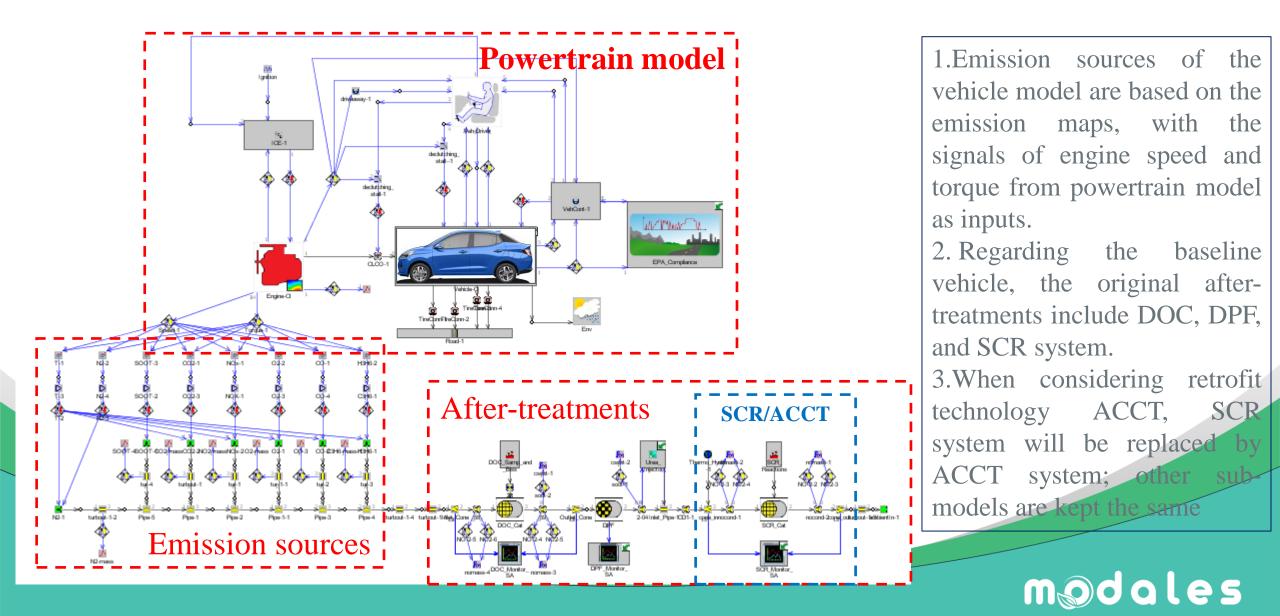

VS

Driving simulator

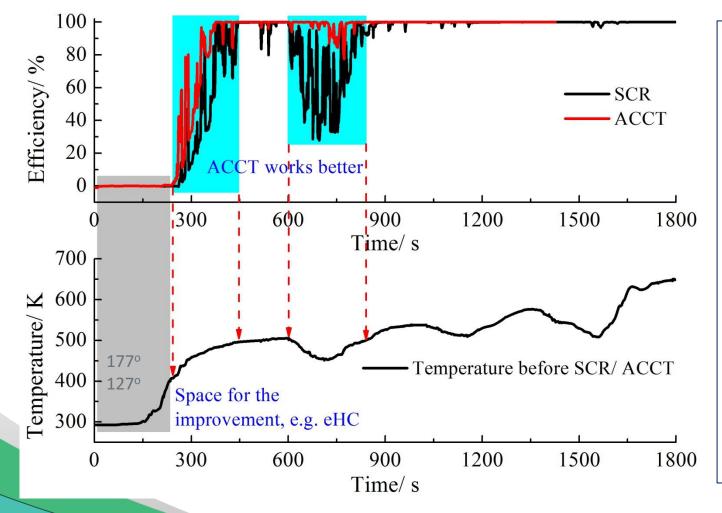
Vehicle model including

mødales

Potential NOx control technologies


Based on ammonia generation (1-3), heat loss prevention (4), exhaust temperature increase (5-6), NOx adsorber (7)

No	Technology	Response	Energy Penalty	Complexity/Affordability/Adaptability	Effectiveness
1	SCR* (Selective Catalytic Reduction)	Medium	Low	Medium/Medium/Medium	Medium
2	ACCT (Ammonia Creation and Conversion Technology)	Fast	Medium/ <mark>High</mark>	Complex/Low/Low	High
3	ASDS (Ammonia Storage and Delivery System)	Fast	Medium	Complex/Low/Low	High
4	Thermal Insulation Technology (Insulation materials covering SCR system)	Slow	Low	Simple/High/High	Low
5	EHC (Electrically Heated Catalyst)	Fast	High	Simple/High/High	High
6	External burner	Fast	High	Simple/High/High	High
7	LNT (Lean NOx Trap)	Fast	Medium	Medium/Medium/Medium	Low


mødale<u>s</u>

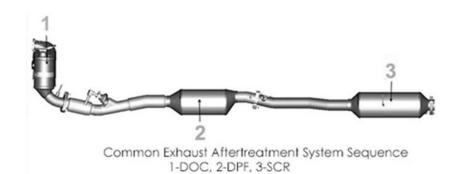
*: Commercially available

Vehicle model including after-treatments

Performance comparisons between SCR and ACCT

1. NOx emissions after SCR and ACCT systems are the same at the first 250s of the WLTC (Worldwide harmonized Lightduty vehicles Test Cycles) which is the warm-up process of the catalyst, where temperature is lower than light-off value at the start of the driving cycle.

2. Compared with SCR, NOx emissions drop significantly in the range of 600s ~ 800s for ACCT.


3. Hydrolysis and thermolysis reactions of ACCT fluid are much lower than AdBlue, which causes lower NOx emissions for ACCT system during some periods.

modales

Comparison of after-treatment layouts

NOx emission factors when **SCR** system is adopted

	CO/ g/km	HC+NOx/ g/km	NOx/ g/km
Normal layout	0.012	0.076	0.069
Layout-1	0.012	0.054	0.047
Layout-2	0.024	0.057	0.034

Euro 6 emission regulations

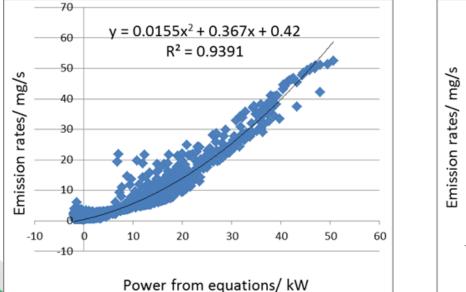
Emissions	Limits
СО	0.5 g/km
HC+NOx	0.17 g/km
NOx	0.08 g/km
PM	0.005 g/km
PN	6×10 ¹¹ #/km

NO-	fastana			~~~~	in adamtad	
NOx emission	lactors	when	ACCI	system	is adopted	

	CO/ g/km	HC+NOx/ g/km	NOx/ g/km
Normal layout	0.012	0.053	0.046
Layout-1	0.012	0.030	0.023
Layout-2	0.024	0.032	0.008

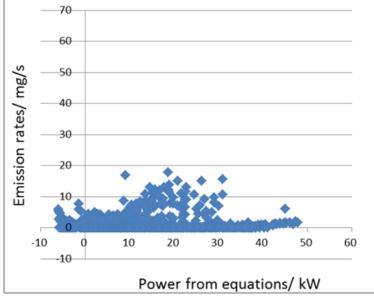
1. CO emission factor is much lower than the emission regulation limits for all the three layouts.

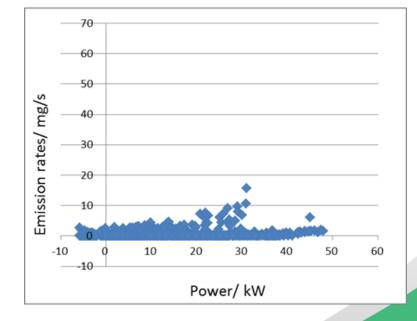
2. The NOx emission factor over normal layout is close to the limits for SCR scenarios.


3. Regarding the total emissions of HC+NOx, layout-1 presents the best performance.

4. Layout-2 has the best performance if future emission regulations care more about NOx emissions. dales

5. ACCT system performs much better in terms of emission reduction than SCR system.


Performance of retrofits for NOx reduction


Engine-out NOx

Pipe-out NOx (include cold start)

Pipe-out NOx (exclude cold start)

Summary and next step

- When the retrofit is up and running, the pipe-out NOx emission is **not significantly affected** by driving behaviour, but the engine-out emission is.
- Both SCR and ACCT are not efficient for low exhaust temperatures.
- Detailed analysis and results can be found in scientific publications:
 - 1) "The effect of after-treatment techniques on the correlations between driving behaviours and NOx emissions of passenger cars", *Journal of Cleaner Production* (5-year IF: 8.41), <u>https://doi.org/10.1016/j.jclepro.2020.125647</u>.
 - 2) "Impacts of De-NOx system layouts of a diesel passenger car on exhaust emission factors and monetary penalty", *Journal of Cleaner Production,* under review.
- More work needed to understand how NOx retrofits perform in real-time under different traffic and weather conditions (e.g. engine-off at traffic lights, stop-and-go, cold start etc.) and on certain vehicles (e.g. hybrids).

Adapting driver behaviour for lower emissions

NO_X EMISSION ANALYSIS OF RETROFITED DIESEL-POWERED BUSES

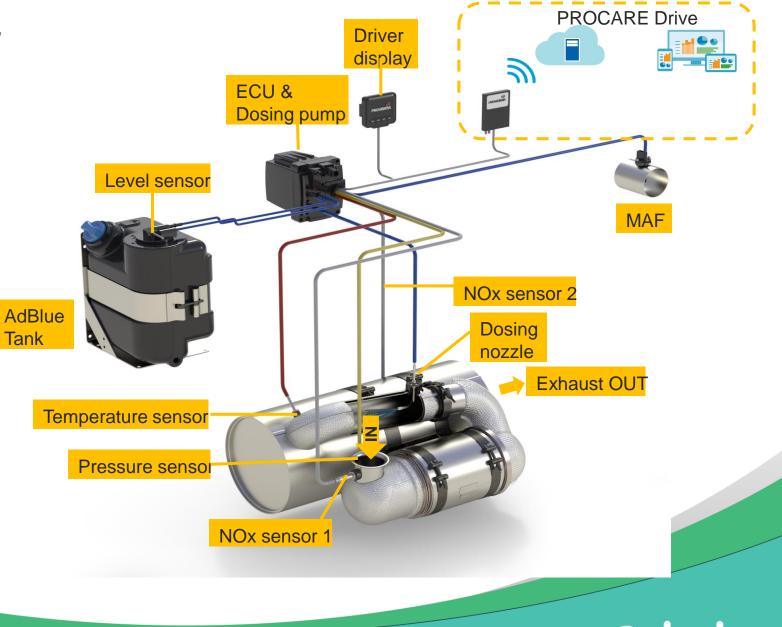
Arno Amberla

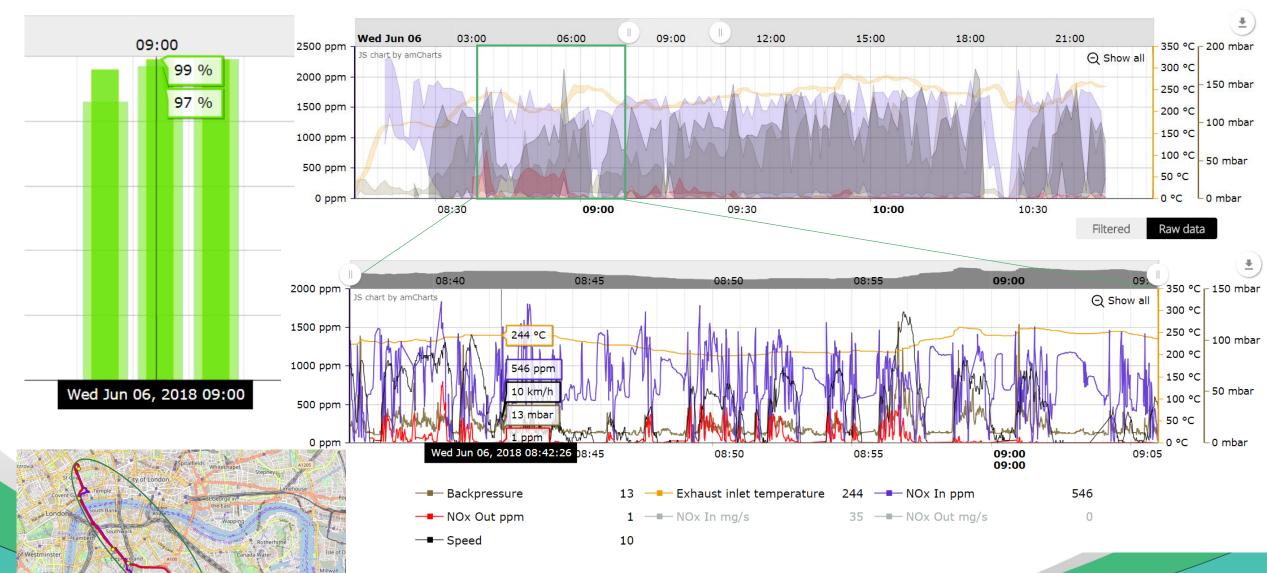
Proventia

Mid-term results on the road to low emissions: 28 May 2021

Overview

Analysis of retrofitted buses with online emission monitoring telemetry Scope of analysis Key findings



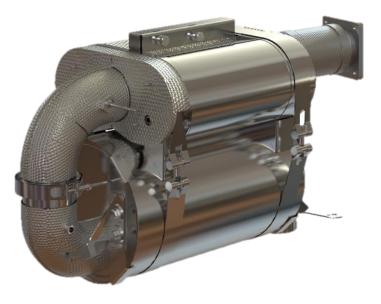


NOxBUSTER® City DPF+SCR Retrofit System

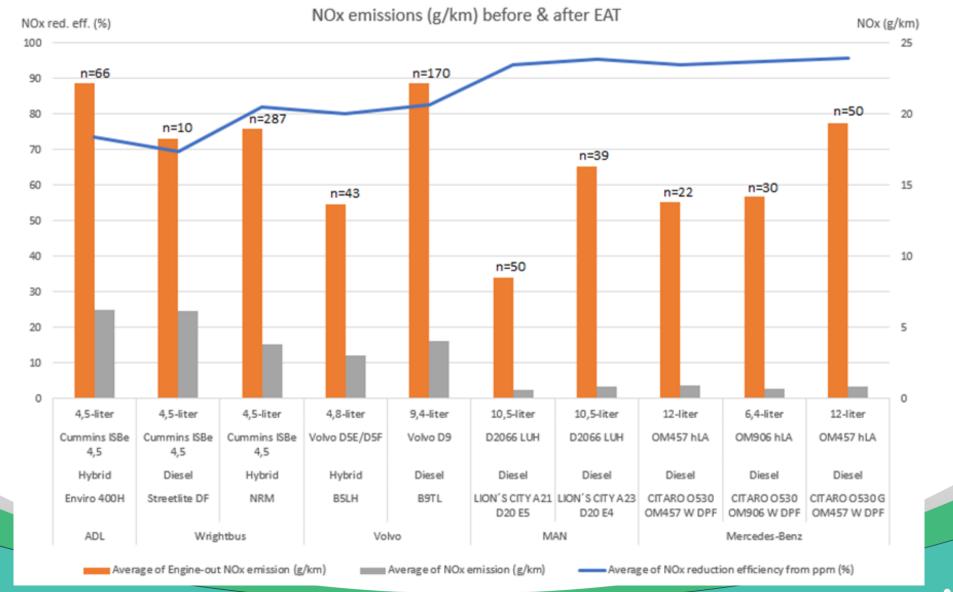
Emission monitoring system enables large fleet's to be monitored closely for real drive emission

mødales

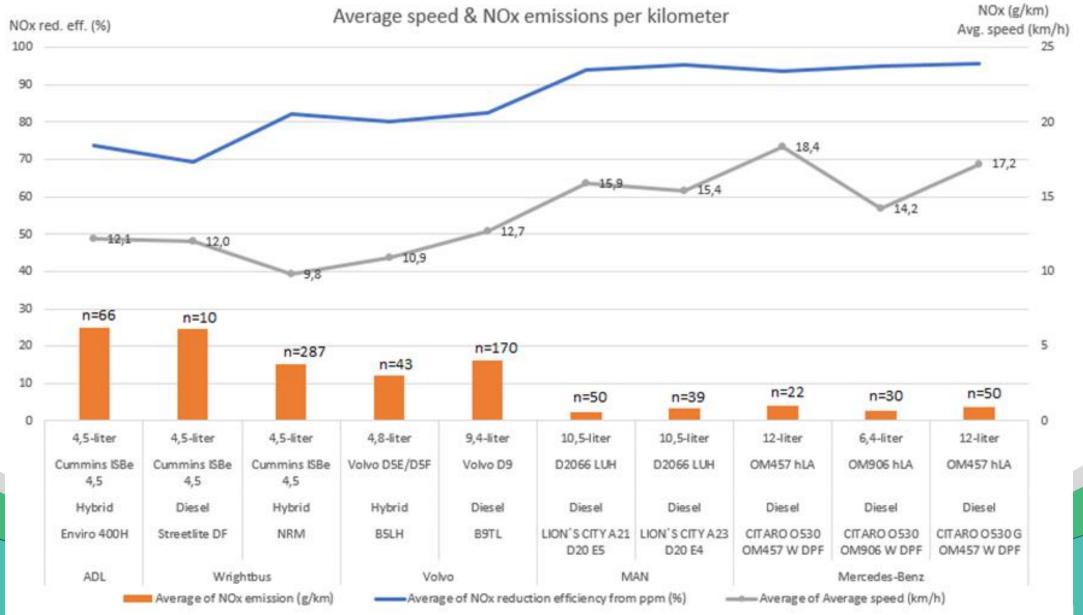
Body type	Manufacturer	Count, n	Total, n
Articulated	MAN	143	266
	Mercedes-Benz	123	
Double-decker	ADL	325	950
	Volvo	241	
	Wrightbus	301	
	VDL	83	
Solo	ADL	284	457
	MAN	60	
	Mercedes-Benz	81	
	Wrightbus	18	
	VDL	14	



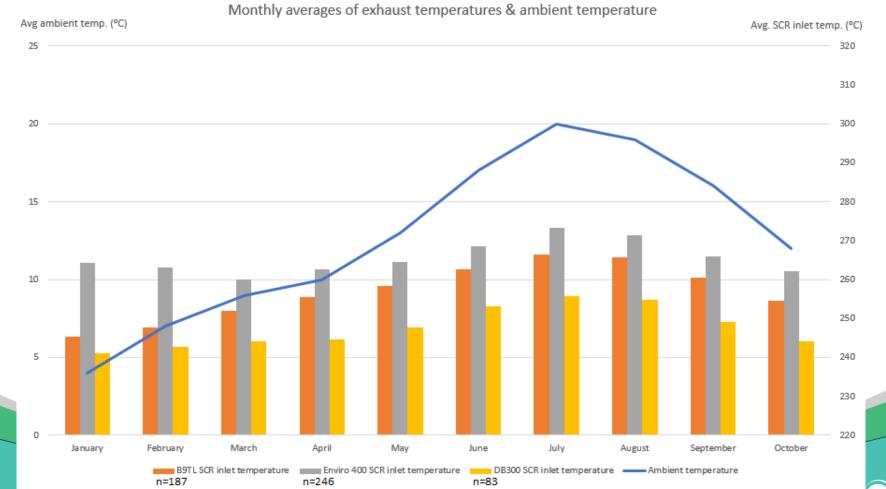
m@dales



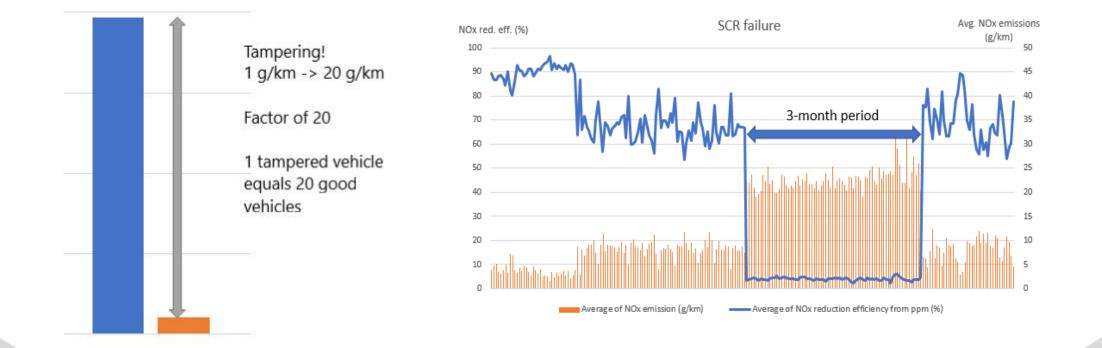
modales


NOx reduction efficiencies

Row Labels	T Distinct Count of Fleet Number	Average of NOx reduction efficiency from ppm (%))										
■Volvo													
🖲 B5LH	54	79	,7										
🗄 B9TL	188	81	,5										
■ Wrightbus													
	10	70	,0			_							
NRM	301	82				Тор	and bottom	models in	NOx reduct	tion efficiend	cy.		
Streetlite WF	8	89	,5 ¹⁰⁰)					n=50	n=39	n=30	n=22	n=55
■ VDL			90)					_		_		_
	14	85	,3 ₈₀		n=54	n=187		n=301					
BB300	83	86	,7	n=79			n=10						
■ ADL			70)									
Enviro 400H	79	73	,5 60	,		_	_	_	_		_	_	_
🗄 Enviro 200	284	83	,4 ₅₀										
🗄 Enviro 400	246	91	,5										
Mercedes-Benz			40)									
B CITARO O530 OM457	16	86	,6 30			_	_	_	_	_	_	_	_
ECITARO O530 OM457 WO DP	F 13	87	,2 20										
B CITARO 0530 G OM457 WO	DPF 68	87	,9										
B CITARO O530 OM906 W DPF	30	95	, 0 ¹⁰										
B CITARO O530 OM457 W DPF	22	95	,0)									
B CITARO 0530 G OM457 W DE	PF 55	95	,2	Cummins ISBe 4,5	 Volvo D5E/D5F 	Volvo D9	Cummins ISBe 4,5	Cummins ISBe 4,5	D2066 LUH	D2066 LUH	OM906 hLA	OM457 hLA	OM457 hLA
MAN				Hybrid	Hybrid	Diesel	Diesel	Hybrid	Diesel	Diesel	Diesel	Diesel	Diesel
⊞LION'S CITY NG323	24	83	,1	Enviro 400H	BSLH	B9TL	Streetlite DF	NRM	LION'S CITY A21 D20 E5	LION'S CITY A23 D20 E4	CITARO O 530 OM906 W DPF	CITARO O 530 OM457 W DPF	CITARO O530 G OM457 W DPF
⊞ LION'S CITY A21 D20 E4	10	89	,8	ADL	Vo	alvo	Wrie	htbus		IAN	OWISOD W DFF	Mercedes-Benz	
⊞ LION'S CITY A40 D20 E5	11	92	3										
BLION'S CITY A23 D20 E5	61	92	,8										
BLION'S CITY A23 D28 E3	8	93	,6										
BLION'S CITY A21 D20 E5	50	93	,9										
BLION'S CITY A23 D20 E4	39	94	,8										
Grand Total	1674	86	,3										



mødales


mooales

Influence of ambient temperature

modales

Maintenance importance

In certain cases tampering has less negative effect, but still in magnitude of x 3...10

Conclusions

- Retrofitting is effective way to reduce emission of heavy vehicles in cities
- Ambient temperature and exhaust gas temperature have rather direct correlation (10 deg C difference vs 10 deg C difference)
- In this study Euro 5 hybrids were operated at lowest speed routes. Electrification of buses moves these buses to faster lines and efficiency of retrofitted SCR systems improves

Adapting driver behaviour for lower emissions

www.modales-project.eu

Thank you

Contact:

Arno Amberla Proventia Arno.Amberla@proventia.com

All slides © MODALES Partners, reproduction not allowed without permission of the author of the slides.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815189.

Adapting driver behaviour for lower emissions

Tampering and inspection: technical aspects

Dimitri Margaritis CERTH/HIT

Mid-term results on the road to low emissions: 28 May 2021

Common inspection failures on PTI (periodic technical inspection) (example)

- Over 80 percent of the vehicles on the road have one or more service or repair that is needed, but has not been taken care of
- That translates into over 160 million vehicles in the US alone

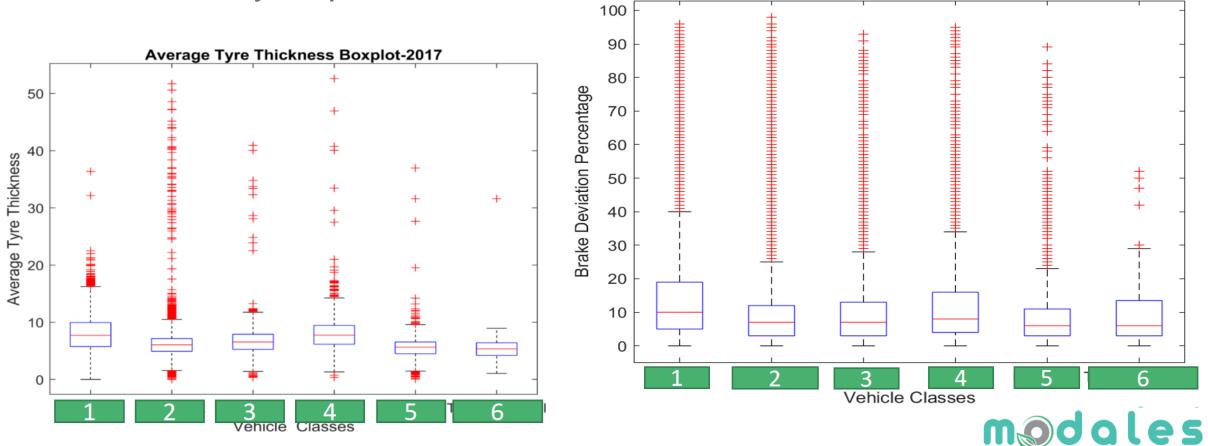
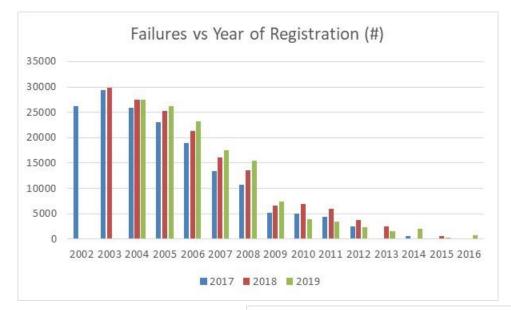
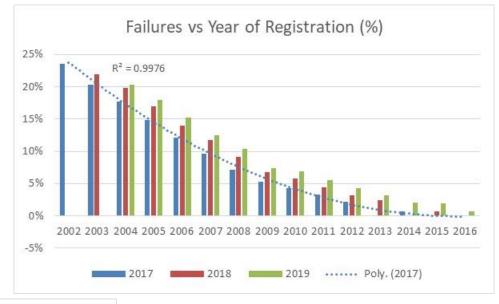
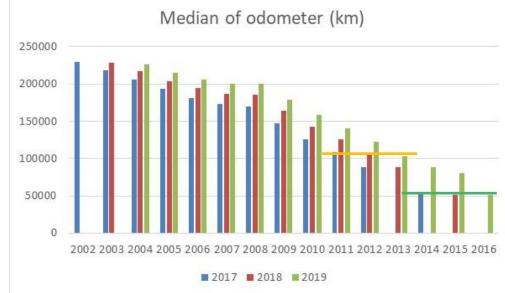

Vehicle Documents and Miscellaneous Items	Vehicle Body	Vehicle Safety
Missing or incorrect tags Non-operational HVAC Damaged or torn upholstery Unacceptable sanitation Damaged wheel chair Damaged lift wheel Incorrect tag mounting	Damaged or rusted doors Damaged and/or rusted quarter panel Damaged and/or rusted hood Damaged and/or rusted fenders Damaged and/or missing bumpers Damaged and/or missing bumper guards Incorrect tag mounting Missing or improper gas cap Damaged body work	 Missing or damaged mirrors Missing or damaged horn Missing or damaged seatbelts Missing or damaged gear indicator Missing or damaged gear indicator Missing or damaged safety chains Missing or damaged chain guard
Vehicle Lights	Vehicle Glass	Vehicle Suspension
Non-operational signal lights Non-operational backup lights Non-operational tail lights Non-operational tail lights Non-operational tag lights Non-operational tag lights Non-operational tag lights Non-operational marker lights Non-operational fog lights Non-operational fog lights Incorrect lens color Damaged or missing side reflectors Non-operational headlights Non-operational headlights Non-operational headlights	Cracked or damaged windshield Cracked or damaged side window Cracked or damaged rear window Non-operational window controls Unacceptable window tint Missing or non-operational wipers Missing or damaged wiper blades	Damaged or unacceptable: Kingpin Shocks Ball joints Control arm Rack and pinion Tie rod ends Idler arm Pitman arm Sleeve Springs Steering box Steering box Steering wheel Bearings Steering linkage Column Alignment Power steering Bellows CV joints
Vehicle Exhaust • Leaking exhaust	Vehicle Tires • Unacceptable or worn tire	Vehicle Brakes Worn or warped rotors
Tampered exhaust	tread	- wom of warped rotors

Table 1 Common Causes of Inspection Failure—Commercial Vehicles

 Missing or damaged exhaust converter Loose exhaust Flexible piping exhaust Excessive exhaust noise Excessive exhaust smoke Excessive exhaust hydro carbon Excessive exhaust carbon monoxide 	 Unacceptable or cut tire Mixed tire types Unacceptable knots and bulges in tires Over- or under-inflated tires Visible tire cord Tire recap/tread front Missing lug nuts 	 Damaged or worn front brakes Damaged or worn rear brakes Excessive brake noise Leaking or damaged master cylinder Leaking or damaged wheel cylinder Damaged or non-operational vacuum booster Non-operational parking brake Non-operational brake warning light Incorrectly adjusted pedal reserve Missing and/or damaged pedal pads
Tail Pipe Test – Typical causes for • Air to fuel mixture may be incorr • Positive Crankcase Ventilation (F • Vacuum leak present • Exhaust Gas Re-Circulation (EGR • Ignition timing may be incorrect • One or more worn, damaged, or • Catalytic converter is clogged, m • Malfunctioning oxygen sensor • Internal engine parts may be ma • Dirty or contaminated engine oil • Clogged air filter * Indicates items that may or may	rect. PCV) valve may be malfunctioning of) may be malfunctioning * fouled sparkplugs are present issing, or ineffective * Ifunctioning or damaged	or missing *


Mandatory Periodic Inspection data (example from Turkey)


- Brake and Tyre Inspection database of 2017-2019
- Meta Analysis performed



Brake Deviation Boxplot 2017

Mandatory Periodic Inspection data (example from Finland)

Tampering techniques for manipulating the EPS

• In general, there are four tampering techniques that used today for manipulating the environmental protection system (EPS)

Tampering technique	Work description
ECU re-flashing	A workshop alters the ECU flash and checks using test drives or dyno tests if
	any errors or problems arise. In the end, the workshop alters the ECU code
	in such a way that the requested EPS is deactivated, and no MILs are
	activated or OBD fault codes are stored. (Mostly LD vehicles)
Emulators	The majority of the emulators offered for HD vehicles are devices that attack
	the SCR system. Most of these SCR or NOx sensor emulators are CAN only,
	meaning they only communicate with the vehicle through the CAN-bus.
Modifiers	Specific hardware solutions that are simpler to emulators in design and
	mainly aim to alter the control state of an EPS
OBD Suppressors	These devices sent specific CAN-bus messages to suppress the onboard
	diagnostics of the vehicle (by periodically erasing the fault code storage).

Mandatory Periodic Inspection data: OBD scans

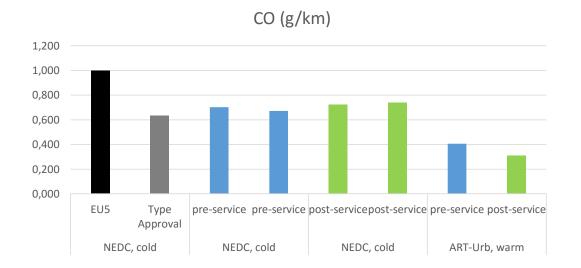
- PTI legislation has introduced an alternative test method where OBD testing is allowed, without any independent assessment
- It is a part of the Roadworthiness Directive 2014/45/EU, where independent emission testing using direct tailpipe measurement (measured at the end of the exhaust), can be replaced with an on-board diagnostic (OBD) test for Euro 6 vehicles
- The OBD system is not an emissions test, but is a diagnostic monitoring of the components that are part of the vehicle emission control system
- An independent study by CITA (International Motor Vehicle Inspection Committee) and with extensive PTI testing evidence from France who have introduced OBD tests, has shown that measurements via the OBD system are not sufficient to ensure that the exhaust emission levels continue to comply with the requirements
- OBD and tailpipe measurement methods are needed to be able to measure the correct functioning of the exhaust control system and for independent testing of the actual vehicle emissions
 - An example, many diesel vehicles have had their particulate filter or the EGR (exhaust gas re-circulation system) modified or removed and the engine management software changed to circumvent the OBD monitoring to avoid performance problems, especially in urban environments

Maintenance and tampering testing: method

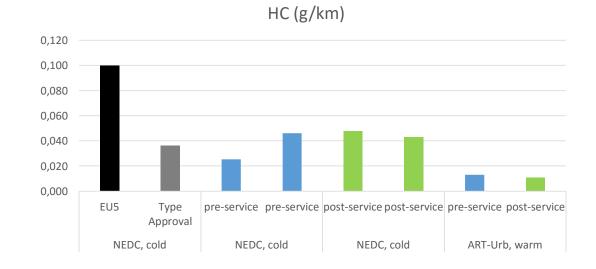
- Test vehicles sourced amongst VTT employees
- First batch: **six petrol fueled cars**, MY 2006 to MY 2013
- Mileages appr. 100 000 to 200 000 km
- Driven appr. 20 000 km since last maintenance
- Test sequence: cold-start NEDC, warm-start ARTEMIS-Urban
- Tests before and after service
- Service consists of: change of oil & filter, new air filter, new spark plugs
- OBD scan and printout before/after service

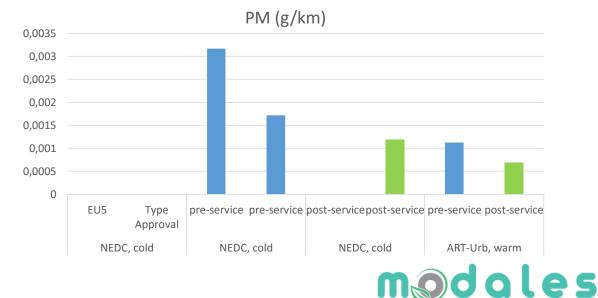
Basic Test Sequence – Petrol-fuelled Cars

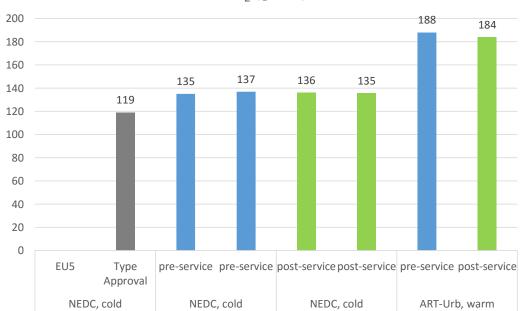
Pre-test: "as is" -condition

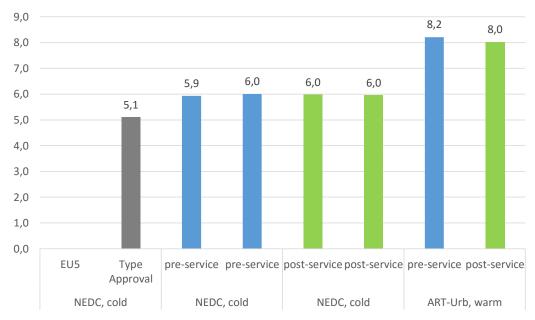

Service

Re-Test




Preliminary results – CAR B (1/2)


0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 EU5 pre-service pre-service post-servicepost-service pre-service post-service Туре Approval NEDC, cold NEDC, cold NEDC, cold ART-Urb, warm



Preliminary results – CAR B (2/2)

 CO_2 (g/km)

modales

F.C. (L/100 km)

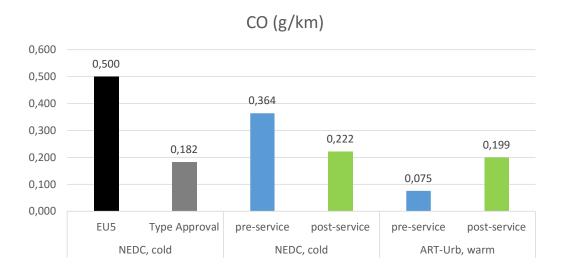
Basic Test Sequence – Diesel-fuelled Cars

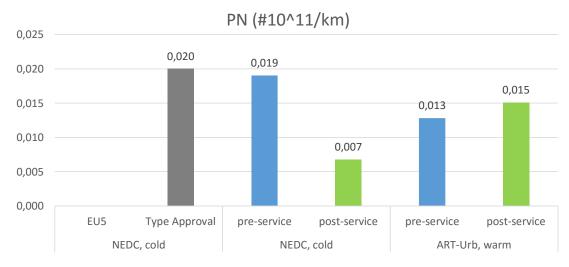
< If PM/PN results show abnormal >

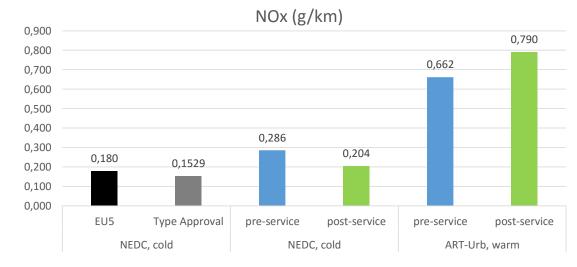
Pre-test "as is" -condition

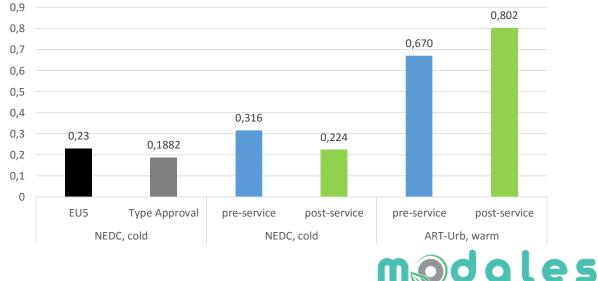
Service

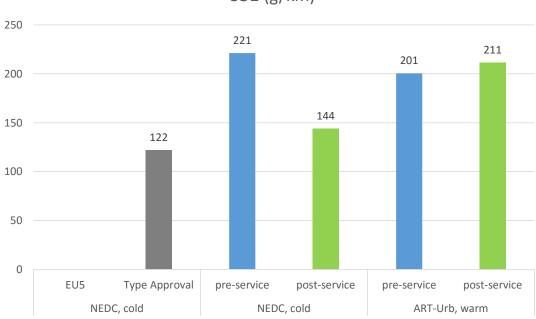
1st Re-Test


DPF Cleaning or Renewal

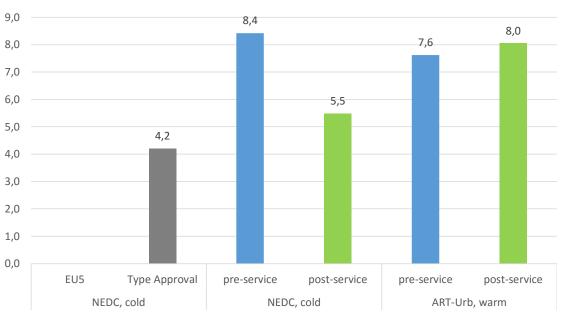



2nd Re-Test


Preliminary results – CAR G (1/2)

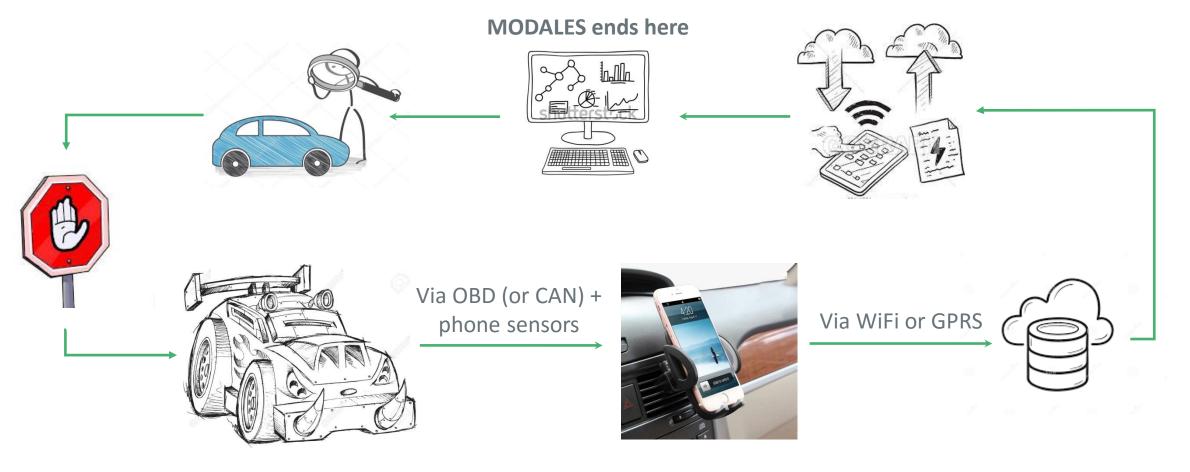


HC+NOx (g/km)



Preliminary results – CAR G (2/2)

MY2013, 1.6 TDI, DSG7, 291 000 km


CO2 (g/km)

F.C. L/100km)

mødales

MODALES tampering and poor maintenance registration & reporting solution

mødales

www.modales-project.eu

Thank you

Contact:

Dimitri Margaritis CERTH/HIT Email: dmarg@certh.gr

All slides © MODALES Partners, reproduction not allowed without permission of the author of the slides.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815189.

Legal issues on tampering

Esther Tenge Spark Legal Network

Mid-term results on the road to low emissions: 28 May 2021

Methodology

- Legal requirements on vehicle tampering
- Penalties and sanctions
- National strategies and initiatives regarding vehicle tampering
- Effectiveness of rules on tampering and enforcement

Methodology

Research on the legal situation on vehicle tampering across EU Member States

Data collection

- 1. Legal desk research in 14 countries (13 EU Member States + UK) carried out by national legal experts
- 2. Stakeholder survey (EU Survey) sent out to governmental and industry stakeholders, and associations

Comparative analysis aimed at identifying the commonalities and contrasts in legislation on vehicle tampering across EU Member States

Legal requirements on vehicle tampering

<u>EU law on type approval</u>: Defeat devices are generally and explicitly prohibited (tampering is only defined in the context of heavy duty vehicles)

<u>EU law on periodic roadworthiness tests</u>: Member States should consider appropriate measures to prevent adverse manipulation of, or tampering with, vehicle parts and components that could have a negative bearing on required safety and environmental characteristics of the vehicle

<u>National law on vehicle tampering</u>: Few specific national requirements targeting (the prevention of) tampering going beyond EU law

Legal requirements on vehicle tampering (examples)

Type approval

- NL: The use of defeat strategies that reduce the effectiveness of emission control equipment (both relating to heavy duty vehicles and light passenger and commercial vehicles) is prohibited
- DE: The German Road Traffic Act prohibits and penalises the *preparation* of offences related to vehicle tampering

Post-type approval

- FI: A vehicle used in traffic may not be repaired, modified, allowed to change or be equipped with an accessory after commissioning in such a way that the vehicle no longer meets the requirements that were in force in Finland at the time of the vehicle's first commissioning or later
- PL: The Director of the Transport Technical Supervision revokes the type-approval certificate in case of a negative compliance inspection result
- IE: If the emission control system fitted by the manufacturer is absent, modified or obviously defective, this may be recorded as a major deficiency in the context of roadworthiness testing

Penalties and sanctions (examples)

Type approval (mostly applicable to manufacturers)

- SK: Fine of 300 EUR to 50,000 EUR
- IE: Fine up to 5,000 EUR, a prison sentence of up to 6 months (or both) / fine up to 100,000 EUR, a prison sentence up to 12 months (or both)

Post-type approval

- LU: Imprisonment for eight days to one year and/or fine of 251 to 5000 EUR (Professional sellers may also face a criminal offence)
- FI: Fine of 70 EUR for intentional or negligent vehicle violation / a vehicle violation

National strategies and initiatives regarding vehicle tampering (examples)

Access to the mileage history

• SK: Anyone can request a mileage certificate based on information from a national database when giving the VIN number of a vehicle and paying 8 EUR

Measuring of emissions

• BE: The Walloon Region of Belgium is testing a remote emission measurement equipment along a highway, with an Automatic Number Plate Recognition camera

Effectiveness of rules on tampering and enforcement

Awareness of rules

- No official data or research identified at national level
- Media coverage of the topic and/or of the "Dieselgate" events could have cause awareness regarding rules on tampering in the Member States to have risen

Effectiveness of the national rules on tampering

- Studies generally identify national systems as proportionate and globally efficient
- Some gaps in national legislation were identified
- DE: Law prohibits odometer manipulation, but not the sale of manipulation devices

Effectiveness of the enforcement of rules on tampering

- Issues mostly relate to the lack of severity of the sanctions
- FI: Anti-emission tampering rules are not considered dissuasive enough according to a study

www.modales-project.eu

Thank you

Contacts:

Esther Tenge Spark Legal Network esther@sparklegalnetwork.eu

All slides © MODALES Partners, reproduction not allowed without permission of the author of the slides.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815189.

Questions / Discussion

Moderated by Jean-Charles Pandazis ERTICO – ITS Europe

If you have a question please write it in the chat box

Wrap-up

Andrew Winder

Project Coordinator ERTICO – ITS Europe

Mid-term results on the road to low emissions: 28 May 2021

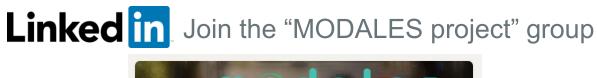
Next events

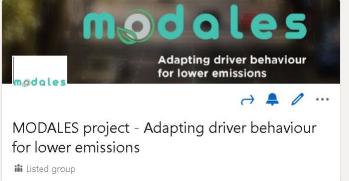
13-15 July 2021: XXI Congreso español sobre Sistemas Inteligentes de Transporte (21st Spanish Congress on ITS), Madrid and online

- Presentation "Como reducir las emisiones de vehículos fomentando un estilo de conducción favorable a las bajas emisiones y el buen mantenimiento del vehículo: Experiencia del proyecto MODALES" by Joan Domingo (RACC) in congress theme 3: Movilidad Conectada (Connected Mobility)
- <u>www.itsspain.es/xxi-congreso-its</u>
- 11-15 October 2021: **ITS World Congress**, Hamburg
- Session accepted/confirmed on "Intelligent systems to help drivers and road authorities reduce pollutant emissions: Beyond eco-driving" including the projects MODALES, uCARe, CARES and also from the company HERE
- A technical paper on MODALES from the University of Leeds is also expected
- <u>https://itsworldcongress.com</u>

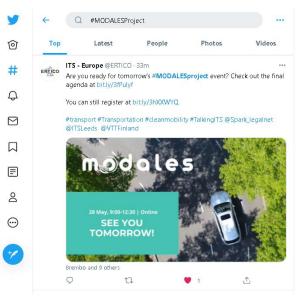
Targeted webinars on specific topics will also be organised as appropriate.

To be informed, stay connected to our media (on the next slide)




Wrap-up

- Presentations will be made available on the project website in the next few days
- The webinar recording will also be made available on YouTube


Stay connected

Project website: <u>www.modales-project.eu</u> Contains news, events and a library section including public deliverables and other publications

Search the #MODALESProject hashtag or follow @ERTICO

Thank you very much for participating!

MODALES General Assembly on board the barge "Naiade" in Toulouse, France, January 2020

www.modales-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 815189.